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Abstract. Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled
skew shape posets are precisely the finite posets P with underlying set {1, 2, . . . , |P|}
such that the P-partition generating function is symmetric and the set of linear exten-
sions of P, denoted ΣL(P), is a left weak Bruhat interval in the symmetric group S|P|.
We describe the permutations in ΣL(P) in terms of reading words of standard Young
tableaux when P is a regular Schur labeled skew shape poset, and classify ΣL(P)’s up
to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape
posets. The results obtained are then applied to classify the 0-Hecke modules MP as-
sociated with regular Schur labeled skew shape posets P up to isomorphism. Then
we characterize regular Schur labeled skew shape posets as the finite posets P whose
linear extensions form a dual plactic-closed subset of S|P|. Using this characterization,
we construct distinguished filtrations of MP with respect to the Schur basis when P is
a regular Schur labeled skew shape poset.

Keywords: labeled poset, P-partition, weak Bruhat order, 0-Hecke algebra, representa-
tion, skew Schur function

1 Introduction

Schur labeled skew shape posets naturally appear in the context of the celebrated Stanley’s
P-partition conjecture. Let Pn be the set of posets on [n] := {1, 2, . . . , n}. To each poset
P ∈ Pn, one can associate a quasisymmetric function KP, called the P-partition generating
function. In 1972, Stanley [15, p. 81] proposed a conjecture stating that for P ∈ Pn, KP is
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a symmetric function if and only if P is a Schur labeled skew shape poset. While this
conjecture has been verified to be true for all posets P with |P| ≤ 8, it remains open in
the general case (see [12]). For the definition of Schur labeled skew shape posets, see
Subsection 2.3. We denote by SPn the set of all Schur labeled skew shape posets in Pn.

On the other hand, regular posets were introduced by Björner–Wachs [4] during their
investigation of the convex subsets of the symmetric group Sn on [n] under the right
weak Bruhat order. For P ∈ Pn with the partial order ⪯, let ΣR(P) be the set of per-
mutations π ∈ Sn satisfying that if x ⪯ y, then π−1(x) ≤ π−1(y). They observed that
every convex subset of Sn under the right weak Bruhat order appears as ΣR(P) for some
P ∈ Pn, and every right weak Bruhat interval in Sn is convex. This observation led them
to characterize the posets P ∈ Pn satisfying that ΣR(P) is a right weak Bruhat interval.
They introduced the notion of regular posets, and proved that P ∈ Pn is a regular poset
if and only if ΣR(P) is a right weak Bruhat interval in Sn. For the definition of regular
posets, refer to Definition 2.1. We denote by RPn the set of all regular posets in Pn. Let
ΣL(P) := {γ−1 | γ ∈ ΣR(P)}. By considering the left Bruhat order and ΣL(P) instead of
the right Bruhat order and ΣR(P), we can establish a similar characterization. However,
we prefer the former over the latter as it is better suited for handling left Hn(0)-modules.

Let RSPn := RPn ∩ SPn. In the following, we explain the reason why we study regular
Schur labeled skew shape posets from the perspective of the representation theory of the
0-Hecke algebra.

In 1996, Duchamp–Krob–Leclerc–Thibon [7] introduced a ring isomorphism, called
the quasisymmetric characteristic, from the Grothendieck ring G0(H•(0)) of the tower of
0-Hecke algebras to the ring QSym of quasisymmetric functions. For the definition of
the quasisymmetric characteristic, see Subsection 2.4. In 2002, Duchamp–Hivert–Thibon
[6] associated a right Hn(0)-module MP with each poset P ∈ Pn, such that the image
of MP under the quasisymmetric characteristic is KP. This was achieved by defining a
suitable right Hn(0)-action on ΣR(P). For technical reasons, we use a slightly different 0-
Hecke module, denoted as MP, instead of Duchamp–Hivert–Thibon’s module MP. Our
MP is a left Hn(0)-module with the basis ΣL(P). For the precise definition of MP, refer to
Definition 2.4.

Since the middle of 2010, various left 0-Hecke modules, each equipped with a tableau
basis and yielding an important quasisymmetric characteristic image, have been con-
structed ([1, 3, 14, 16, 17]). In order to handle these modules in a uniform manner,
Jung–Kim–Lee–Oh [9] introduced a left Hn(0)-module B(I), referred to as the weak Bruhat
interval module associated with I, for each left weak Bruhat interval I in Sn. Furthermore,
they showed that the Grothendieck ring

⊕
n≥0 G0(Bn) is isomorphic to QSym as Hopf

algebras, where Bn is the category direct sums of finitely many isomorphic copies of
weak Bruhat interval modules of Hn(0). Recently, Choi–Kim–Oh [5] clarified the exact
relationship between the weak Bruhat interval modules and the 0-Hecke modules MP,
using Björner–Wachs’ characterization.
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The aim of this paper is to give a comprehensive investigation of regular Schur la-
beled skew shape posets and their associated 0-Hecke modules. Firstly, we provide an
explicit description of ΣL(P) for P ∈ RSPn. Next, we study the classification of left weak
Bruhat intervals in Sn up to descent-preserving poset isomorphism. Using the classi-
fication, we classify the Hn(0)-modules MP up to isomorphism as P ranges over RSPn.
Then, we characterize regular Schur labeled skew shape posets as the posets such that
ΣL(P) is a dual plactic-closed subset of Sn. This characterization is applied to show
that for P ∈ RSPn, MP admits a distinguished filtration with respect to the Schur basis.
A tableau description of MP for P ∈ RSPn is also provided. Lastly, we discuss further
issues concerned with the classification of the Hn(0)-modules MP.

For details and more results, we refer the reader to [10].

2 Preliminaries

Throughout this paper, n will denote a nonnegative integer unless otherwise stated.

2.1 Compositions, Young diagrams, and bijective tableaux

A composition α of n, denoted by α |= n, is a finite ordered list of positive integers
(α1, α2, . . . , αk) satisfying ∑k

i=1 αi = n. We call k =: ℓ(α) the length of α and n =: |α| the
size of α. Given α = (α1, . . . , αℓ(α)) |= n, we define set(α) := {α1, α1 + α2, . . . , ∑ℓ(α)−1

i=1 αi}.
The reverse composition αr of α is the composition (αk, αk−1, . . . , α1) and the complement
αc of α is the unique composition satisfying set(αc) = [n − 1] \ set(α). If a composition
λ = (λ1, λ2, . . . , λk) |= n satisfies λ1 ≥ λ2 ≥ · · · ≥ λk, then it is called a partition of n
and denoted as λ ⊢ n. Given two partitions λ and µ with ℓ(λ) ≥ ℓ(µ), we write λ ⊇ µ if
λi ≥ µi for all 1 ≤ i ≤ ℓ(µ). A skew partition λ/µ is a pair (λ, µ) of partitions with λ ⊇ µ.
We call |λ/µ| := |λ| − |µ| the size of λ/µ.

Given a partition λ, we define the Young diagram yd(λ) of λ to be the left-justified
array of n boxes, where the ith row from the top has λi boxes for 1 ≤ i ≤ k. Similarly,
given a skew partition λ/µ, we define the Young diagram yd(λ/µ) of λ/µ to be the Young
diagram yd(λ) with all boxes belonging to yd(µ) removed. A skew partition is called basic
if the corresponding Young diagram contains neither empty rows nor empty columns.
In this paper, every skew partition is assumed to be basic unless otherwise stated. For
skew partitions λ/µ and ν/κ, λ/µ ⊕ ν/κ is the skew partition whose Young diagram
is obtained by taking a rectangle of empty squares with the same number of rows as
yd(λ/µ) and the same number of columns as yd(ν/κ), and putting yd(ν/κ) below and

yd(λ/µ) to the right of this rectangle. For instance, yd((2) ⊕ (1)) = .

Given a skew partition λ/µ of size n, a bijective tableau of shape λ/µ is a filling of
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yd(λ/µ) with distinct entries in [n]. For later use, we denote by τ
λ/µ
0 the bijective tableau

of shape λ/µ obtained by filling 1, 2, . . . , n from right to left starting with the top row.
A bijective tableau is referred to as a standard Young tableau if the elements in each row
are arranged in increasing order from left to right, and the elements in each column are
arranged in increasing order from top to bottom. We denote by SYT(λ/µ) the set of all
standard Young tableaux of shape λ/µ. And, we let SYTn :=

⋃
λ⊢n SYT(λ).

2.2 Weak Bruhat orders on the symmetric group

Let Sn denote the symmetric group on [n]. For 1 ≤ i ≤ n − 1, let si be the simple
transposition (i, i + 1). For σ ∈ Sn, let

DesL(σ) := {i ∈ [n − 1] | ℓ(siσ) < ℓ(σ)} and DesR(σ) := {i ∈ [n − 1] | ℓ(σsi) < ℓ(σ)},

where ℓ(σ) is the length of σ. The left weak Bruhat order ⪯L (resp., right weak Bruhat order
⪯R) on Sn is the partial order on Sn whose covering relation ⪯c

L(resp., ⪯c
R) is given as

follows: σ ⪯c
L siσ if and only if i /∈ DesL(σ) (resp, σ ⪯c

R σsi if and only if i /∈ DesR(σ)).
Given σ, ρ ∈ Sn, the left weak Bruhat interval [σ, ρ]L (resp., right weak Bruhat interval [σ, ρ]R)
denotes the closed interval {γ ∈ Sn | σ ⪯L γ ⪯L ρ} (resp., {γ ∈ Sn | σ ⪯R γ ⪯R ρ}).
Let Int(n) be the set of nonempty left weak Bruhat intervals in Sn.

2.3 Regular posets and Schur labeled skew shape posets

Let Pn be the set of posets on [n]. Given P ∈ Pn, we write the partial order of P as ⪯P.

Definition 2.1. A poset P ∈ Pn is said to be regular if the following holds: for all x, y, z ∈
[n] with x ⪯P z, if x < y < z or z < y < x, then x ⪯P y or y ⪯P z.

We denote by RPn the set of all regular posets in Pn. From the result of Björner–Wachs
[4, Theorem 6.8], it follows that

(i) for P ∈ Pn, P is regular if and only if ΣL(P) is a left weak Bruhat interval, and

(ii) the map RPn → Int(n) sending P to ΣL(P) is a one-to-one correspondence.

Here, ΣL(P) := {σ ∈ Sn | σ(i) ≤ σ(j) for all i, j ∈ [n] with i ⪯P j}.
Next, let us introduce Schur labeled skew shape posets. Let λ/µ be a skew partition

of size n. Given a bijective tableau τ of shape λ/µ, we define poset(τ) to be the poset
([n],⪯τ), where i ⪯τ j if and only if i lies weakly northeast of j in τ. A Schur labeling of
shape λ/µ is a bijective tableau of shape λ/µ such that the entries in each row decrease
from left to right and the entries in each column increase from top to bottom. Let S(λ/µ)
be the set of all Schur labelings of shape λ/µ. Since τ

λ/µ
0 is a Schur labeling, S(λ/µ) is

nonempty. Set SP(λ/µ) := {poset(τ) | τ ∈ S(λ/µ)} and SPn :=
⋃
|λ/µ|=n SP(λ/µ).
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Definition 2.2. A poset in Pn is said to be a Schur labeled skew shape poset if it is contained
in SPn.

Example 2.3. When λ/µ = (2, 2), we have S(λ/µ) =

ß
τ1 := 2 1

4 3
, τ2 := 3 1

4 2

™
.

Therefore, SP(λ/µ) consists of the following posets:

poset(τ1) = 1

2

3

4 and poset(τ2) = 1

3

2

4 .

For simplicity, we set RSPn := RPn ∩ SPn.

2.4 The 0-Hecke algebra and the quasisymmetric characteristic

The 0-Hecke algebra Hn(0) is the associative C-algebra with 1 generated by π1, π2, . . . , πn−1
subject to the following relations: (1) π2

i = πi for 1 ≤ i ≤ n − 1, (2) πiπi+1πi =
πi+1πiπi+1 for 1 ≤ i ≤ n − 2, and (3) πiπj = πjπi if |i − j| ≥ 2. According to [13],
there are 2n−1 pairwise nonisomorphic irreducible Hn(0)-modules which are naturally
parametrized by compositions of n. For each α |= n, the irreducible module Fα cor-
responding to α is the 1-dimensional Hn(0)-module spanned by a vector vα, which is
annihilated by πi if i ∈ set(α) or fixed by πi otherwise for all 1 ≤ i ≤ n − 1.

Let G0(Hn(0)) be the Grothendieck group of the category of finitely generated left Hn(0)-
modules and G0(H•(0)) :=

⊕
n≥0 G0(Hn(0)) the ring equipped with the induction product.

In [7], Duchamp–Krob–Leclerc–Thibon showed that the linear map

ch : G0(H•(0)) → QSym, [Fα] 7→ Fα,

called quasisymmetric characteristic, is a ring isomorphism. Here, QSym is the ring of
quasisymmetric functions and Fα is the fundamental quasisymmetric function.

2.5 Modules arising from posets and weak Bruhat interval modules

Definition 2.4. (cf. [6, Definition 3.18]) Let P ∈ Pn. Define MP to be the left Hn(0)-module
with CΣL(P) as the underlying space and with the Hn(0)-action defined by

πi · γ :=


γ if i ∈ DesL(γ),
0 if i /∈ DesL(γ) and siγ /∈ ΣL(P),
siγ if i /∈ DesL(γ) and siγ ∈ ΣL(P).

For P ∈ Pn, a map f : [n] → Z≥0 is called a P-partition if (i) f (i) ≤ f (j) for all i ⪯P j
and (ii) f (i) < f (j) for all i ⪯P j with i > j. The P-partition generating function is defined

by KP := ∑ f :P-partition x| f−1(1)|
1 x| f−1(2)|

2 · · · .
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Theorem 2.5. ([6, Theorem 3.21(i)]) For P ∈ Pn, we have ch([MP]) = ψ(KP), where ψ is the
involution of QSym defined by ψ(Fα) = Fαc .

In order to provide a unified method for dealing with Hn(0)-modules constructed
using tableaux in [1, 3, 14, 16, 17], Jung–Kim–Lee–Oh [9] introduced the weak Bruhat
interval module B(I) associated with a left weak Bruhat interval I in Sn. For I ∈ Int(n),
B(I) can be defined as MP, where P is the unique poset in RPn such that ΣL(P) = I.

3 The weak Bruhat interval structure of ΣL(P) for P ∈ RSPn

First, we introduce a specific Schur labeling associated with a Schur labeled skew shape
poset. For P ∈ SPn, we define τP to be the unique Schur labeling such that

sh(τP) is basic, poset(τP) = P, and mini(τP) < minj(τP) for 1 ≤ i < j ≤ k. (3.1)

Here, mini(τP) is the smallest entry in the ith connected component of τP from the top
for all 1 ≤ i ≤ k and k is the number of connected components of P.

Example 3.1. Let P = 1

2

3

4 5 . There are two Schur labelings τ such that poset(τ) = P,

more precisely,

τ1 :=
2 1

4 3

5

and τ2 :=
5

2 1

4 3

.

Since τ1 is a Schur labeling and satisfies (3.1), τP = τ1.

Definition 3.2. Let P ∈ SPn and λ/µ = sh(τP). The τP-reading is the map

readτP : SYT(λ/µ) → Sn, T 7→ readτP(T),

where readτP(T) is the permutation in Sn given by readτP(T)(k) = TτP−1(k), the entry of T
in the box τ−1(k), for 1 ≤ k ≤ n.

With these notions, we state the following theorem.

Theorem 3.3. Let P ∈ SPn and λ/µ = sh(τP). Then, ΣL(P) = readτP(SYT(λ/µ)). In particular,
if P ∈ RSPn, then

ΣL(P) = [readτP(Tλ/µ), readτP(T′
λ/µ)]L.

Here, Tλ/µ(resp. T′
λ/µ

) is the standard Young tableau obtained by filling yd(λ/µ) by 1, 2, . . . , n
from left to right starting with the top row (resp. from top to bottom starting with leftmost
column).
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Example 3.4. Let P be the poset given in Example 3.1 and λ/µ = (3, 3, 1)/(1, 1). Note that

Tλ/µ =
1 2

3 4

5

, T′
λ/µ =

2 4

3 5

1

, and τP =
2 1

4 3

5

.

Since readτP(Tλ/µ) = 21435 and readτP(T′
λ/µ

) = 42531, we have ΣL(P) = [21435, 42531]L.

4 An equivalence relation on Int(n)

For I1, I2 ∈ Int(n), a poset isomorphism f : (I1,⪯L) → (I2,⪯L) is called descent-preserving

if DesL(γ) = DesL( f (γ)) for all γ ∈ I1. We define an equivalence relation
D≃ on Int(n)

by I1
D≃ I2 if there is a descent-preserving poset isomorphism between I1 and I2. In [10,

Section 4], we show that B(I1) ∼= B(I2) for all I1, I2 ∈ Int(n) with I1
D≃ I2. This leads us

to study the equivalence classes under
D≃. The following theorem provides significant

information regarding equivalence classes under
D≃.

Theorem 4.1. Let C be an equivalence class under
D≃. Then, {σ | [σ, ρ]L ∈ C} is a right weak

Bruhat interval in Sn.

According to Theorem 4.1, every equivalence class C can be expressed as follows:

C = {[γ, ξCγ]L | γ ∈ [σ0, σ1]R},

where ξC := ρσ−1 for any [σ, ρ]L ∈ C and σ0, σ1 ∈ Sn with [σ0, σ1]R = {σ | [σ, ρ]L ∈ C}.
When P ∈ RSPn, we explicitly describe the equivalence class of ΣL(P) in the following
theorem.

Theorem 4.2. Let P ∈ RSPn and C the equivalence class of ΣL(P) under
D≃. Then,

C = {ΣL(Q) | Q ∈ RSPn with sh(τQ) = sh(τP)}.

Theorem 4.2 tells us that {ΣL(P) | P ∈ RSPn} is closed under
D≃ and the equivalence

classes in this set are parametrized by skew partitions of size n. To be precise, for any
skew partition λ/µ of size n, let

Cλ/µ = {ΣL(P) | P ∈ RSPn with sh(τP) = λ/µ}.

This set is nonempty since poset(τλ/µ
0 ) ∈ Cλ/µ, and therefore it is an equivalence class by

Theorem 4.1. To summarize, {ΣL(P) | P ∈ RSPn} =
⊔
|λ/µ|=n Cλ/µ (disjoint union).
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5 The classification of MP’s for P ∈ RSPn

In [15], Stanley proposed the following conjecture, called Stanley’s P-partitions conjecture.

Conjecture 5.1. ([15, p. 81]) For P ∈ Pn, if KP is symmetric, then P ∈ SPn.

Assuming Stanley’s P-partitions conjecture holds, Theorem 2.5 implies that for any
P ∈ RSPn and Q ∈ RPn \ SPn, ch([MP]) is symmetric but ch([MQ]) is not symmetric, thus
MP ̸∼= MQ. In addition, by the correspondence between RPn and Int(n) in Subsection 2.3,

{MP | P ∈ RSPn} = {B(I) | I ∈ Int(n) and ch([B(I)]) ∈ Sym}.

This leads us to consider the classification problem for {MP | P ∈ RSPn}. We solve this
problem by determining the projective cover and injective hull of MP (P ∈ RSPn) up to
isomorphism.

It is well known that there is a one-to-one correspondence between the set of irre-
ducible Hn(0)-modules and that of projective indecomposable Hn(0)-modules. For α |= n,
let Pα be the projective indecomposable module corresponding to Fα, that is, Pα/rad(Pα) ∼=
Fα. In [6, Propsition 4.1], it was shown that Hn(0) is a Frobenius algebra. Thus, an Hn(0)-
module M is projective if and only if it is injective (see [2, Proposition 1.6.2]).

A generalized composition α of n is a formal sum α(1) ⊕ α(2) ⊕ · · · ⊕ α(k), where α(i) |= ni
for positive integers ni’s with n1 + n2 + · · · + nk = n. For a generalized composition
α = α(1) ⊕ α(2) ⊕ · · · ⊕ α(k) of n, set αc := (α(1))c ⊕ (α(2))c ⊕ · · · ⊕ (α(k))c and αr := (α(k))r ⊕
(α(k−1))r ⊕ · · · ⊕ (α(1))r. And, define Pα := Pα(1) ⊗ Pα(2) ⊗ · · · ⊗ Pα(k) ↑Hn(0)

Hn1 (0)⊗Hn2 (0)⊗···⊗Hnk (0) ,

where ni := |αi| for 1 ≤ i ≤ k. This module is projective and its decomposition into
projective indecomposable modules was provided in [8, Theorem 3.3].

For a connected skew partition λ/µ of size n, define

αproj(λ/µ) := (λ1 − µ1, λ2 − µ2, . . . , λℓ(λ) − µℓ(λ)).

And, for a disconnected skew partition λ/µ of size n, define

αproj(λ/µ) := αproj(λ(1)/µ(1)) ⊕αproj(λ(2)/µ(2)) ⊕ · · · ⊕αproj(λ(k)/µ(k)),

where λ/µ = λ(1)/µ(1) ⊕ λ(2)/µ(2) ⊕ · · · ⊕ λ(k)/µ(k) with connected λ(i)/µ(i)’s (1 ≤ i ≤ k).
Set

αinj(λ/µ) := (αproj(λt/µt)c )r,

where λt and µt denote the transpose of λ and µ, respectively.

Lemma 5.2. For P ∈ RSPn and λ/µ = sh(τP), Pαproj(λ/µ) (resp. Pαinj(λ/µ)) is the projective
cover (resp. the injective hull) of MP.

Using this lemma, we establish the following classification theorem of MP’s for P ∈
RSPn up to Hn(0)-module isomorphism.
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Theorem 5.3. Let P, Q ∈ RSPn. Then MP
∼= MQ if and only if sh(τP) = sh(τQ).

The “if” part can be derived from Theorem 4.2. Let us briefly explain how we prove
the “only if” part. Considering Lemma 5.2 together with Huang’s decomposition of Pα in
[8, Theorem 3.3], we prove that for P, Q ∈ RSPn, MP and MQ have either nonisomorphic
projective covers or nonisomorphic injective hulls if τP and τQ have different shapes.

6 A characterization of regular Schur labeled skew shape
posets P and distinguished filtrations of MP

We first characterize regular Schur labeled skew shape posets from the viewpoint of dual
plactic congruence. The Robinson–Schensted correspondence is a one-to-one correspondence
between Sn and

⋃
λ⊢n SYT(λ) × SYT(λ). For σ ∈ Sn, we use the notation (ins(σ), rec(σ))

to represent the image of σ under this bijection. The dual plactic congruence is an equiv-

alence relation
K∗
∼= on Sn defined by σ

K∗
∼= ρ if rec(σ) = rec(ρ). A subset S of Sn is called

dual plactic-closed if S is a union of equivalence classes under the dual plactic congruence.
In [11, Theorem 1], Malvenuto proved that if ΣL(P) is dual plactic-closed, then P ∈

SPn. We improve Malvenuto’s result by providing the following characterization of reg-
ular Schur labeled skew shape posets.

Theorem 6.1. For P ∈ Pn, P is a regular Schur labeled skew shape poset if and only if ΣL(P) is
dual plactic-closed.

Example 6.2. Consider the posets P =
1

3
2 and Q =

1

2
3 in SP3. One sees

that (i) P is non-regular and Q is regular and that (ii) ΣL(P) = {231, 312, 321} is not dual
plactic-closed and ΣL(Q) = {213, 312, 321} is dual plactic-closed.

Using the characterization given in Theorem 6.1, we construct a filtration of MP (P ∈
RSPn) which provides a representation theoretic interpretation of sλ/µ = ∑ν⊢n cλ

µ,νsν,
the expansion of the skew Schur function sλ/µ in the Schur basis {sν | ν ⊢ n}. Here,
λ/µ = sh(τP) and cλ

µ,ν is the Littlewood–Richardson coefficient. To handle such filtrations
in a uniform manner, we introduce the notion of distinguished filtrations.

Definition 6.3. Let B = {Bα | α ∈ I} be a linearly independent subset of QSymn with
the property that Bα is F-positive for all α ∈ I, where I is an index set. Given a finite
dimensional Hn(0)-module M, a distinguished filtration of M with respect to B is an Hn(0)-
submodule series of M

0 =: M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Ml := M

such that for all 1 ≤ k ≤ l, ch([Mk/Mk−1]) = Bα for some α ∈ I.
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It should be remarked that a distinguished filtration of M with respect to B may not
exist even if ch([M]) expands positively in B. For instance, see [10, Example 6.6]. If such
a filtration exists, we have a representation theoretic interpretation of the expansion of
ch([M]) in B.

Theorem 6.4. For every P ∈ RSPn, MP admits a distinguished filtration with respect to the
Schur basis {sλ | λ ⊢ n}.

Example 6.5. Let P = poset(τ(4,2,1)/(2,1)
0 ). The set {rec(γ) | γ ∈ ΣL(P)} is equal toQ1 :=

1

2

3

4

, Q2 :=
1 3

2

4

, Q3 :=
1 4

2

3

, Q4 := 1 3

2 4
, Q5 := 1 3 4

2

 .

For 0 ≤ k ≤ 5, let Bk := {γ ∈ S4 | rec(γ) = Ql for some 1 ≤ l ≤ k}. Then, 0 = CB0 ⊂
CB1 ⊂ CB2 ⊂ CB3 ⊂ CB4 ⊂ CB5 = MP is a filtration of MP, as seen in the figure:

B5 \ B4

B4 \ B3

B3 \ B2

B2 \ B1

B1

2134

3124 2143

3214 4123 3142

4213 4132 3241

4312 4231

4321

π1

π2 π1, π3

π1, π2 π3 π2

π1, π3 π2, π3 π1, π2

π2, π3 π1, π3

π1, π2, π3

π2 π3

π1 π3 π2

π3 π1 π2 π3 π1

π2 π1 π3

π1 π2

Moreover, since ch([CBk/CBk−1]) = ssh(Qk)t for all 1 ≤ k ≤ 5, it is a distinguished filtra-
tion with respect to {sλ | λ ⊢ 4}.

7 A tableau description of MP for P ∈ RSPn

Let λ/µ be a skew partition of size n. Define Xλ/µ to be the Hn(0)-module with the
underlying space CSYT(λ/µ) and with the Hn(0)-action given by

πi · T =


T if i is strictly left of i + 1 in T,
0 if i and i + 1 are in the same column of T,
si · T if i is strictly right of i + 1 in T
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for 1 ≤ i ≤ n − 1 and T ∈ SYT(λ/µ). Here, si · T is the tableau obtained from T by
swapping i and i + 1. One can see that this Hn(0)-action is well defined and Xλ/µ

∼=
M

poset(τλ/µ
0 )

. Theorem 5.3 says that MP
∼= Xsh(τP) for P ∈ RSPn, and Xλ/µ ̸∼= Xν/κ for

distinct skew partitions λ/µ, ν/κ of size n.

Proposition 7.1. We have the following isomorphisms.

(1) For skew partitions λ/µ of size n and ν/κ of size m,

Xλ/µ ⊗ Xν/κ ↑Hn+m(0)
Hn(0)⊗Hm(0)

∼= Xλ/µ⊕ν/κ as Hn+m(0)-modules.

(2) For a skew partition λ/µ of size n and 1 ≤ k ≤ n − 1,

Xλ/µ ↓Hk(0)⊗Hn−k(0)
∼=

⊕
|ν/µ|=k
µ⊂ν⊂λ

X
ν/µ

⊗ X
λ/ν

as Hk(0) ⊗ Hn−k(0)-modules.

Here, ν/µ and λ/ν denote the basic skew partitions whose Young diagrams are obtained
from yd(ν/µ) and yd(λ/ν), respectively, by removing empty rows and empty columns.

8 Final remarks

In Theorem 5.3, we show that for P, Q ∈ RSPn,

MP
∼= MQ if and only if sh(τP) = sh(τQ). (8.1)

Since RSPn = RPn ∩ SPn, it would be natural to consider the classification problem for
{MP | P ∈ SPn} and {MP | P ∈ RPn}.

(1) Although the notion ‘the shape of τP’ is available for P ∈ SPn, (8.1) does not hold
for P, Q ∈ SPn in general (see [10, Section 7.1.1]).

(2) Unlike (i), the notion ‘the shape of τP’ is not available for P ∈ RPn in general. For
this reason, we modify (8.1) in the following form: for P, Q ∈ RSPn,

MP
∼= MQ if and only if ΣL(P)

D≃ ΣL(Q), (8.2)

which can be obtained by combining Theorem 4.2 and Theorem 5.3. Since the equiv-

alence relation
D≃ is defined on Int(n) = {ΣL(P) | P ∈ RPn}, we expect that this

classification can be extended to RPn in its current form. The validity of this expec-
tation has been checked for values of n up to 6 with the aid of the computer program
SageMath. Also, we show that (8.2) holds when P ∈ RSPn, Q ∈ RPn, and ch([MP])
is a Schur function. For more detail, see [10, Section 7.1.2].
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