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Skein relations for punctured surfaces
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Abstract. We use a combinatorial expansion formula for cluster algebras of surface
type via order ideals of posets to give explicit skein relations for elements of a cluster
algebra arising from a punctured surfaces. An immediate corollary of this is that the
bangles and bracelets of Musiker, Schiffler, and Williams, which are known to provide
a basis in the unpunctured case, form a spanning set in the punctured case.
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1 Introduction

Subsequent to the original introduction of cluster algebras by Fomin and Zelevinsky in
2002 [5], a significant amount of effort has been devoted to studying cluster algebras of
surface type, as defined in [3, 4]. Such cluster algebras are particularly appealing objects
of study because they admit constructions of a variety of combinatorial objects - includ-
ing snake graphs, T-paths, and posets - that can be used to prove important structural
results about positivity or the existence of bases. In this extended abstract, we use a
cluster expansion formula from [11, 13] which expresses elements of a cluster algebra
as generating functions of order ideals of certain posets. We use this expansion formula
to prove skein relations, i.e. relations used to resolve intersections or incompatibilities
of arcs. Topologically, a skein relation takes a pair of intersecting arcs or an arc with
self-intersection and replaces this configuration with two sets of arcs which avoid the
intersection in two different ways. This method gives a generalization and new perspec-
tive to snake graph calculus, as defined in [2]. Skein relations for unpunctured surfaces
were given in [10, 1]. Skein relations on punctured surfaces in the coefficient-free case
were discussed in [7] and specific forms of skein relations in the principal coefficient case
(so called “tidy exchange relations”) were given in [13]. Here, we give explicit formulae
and show all skein relations on (potentially punctured) surfaces contain a term that is
not divisible by any coefficient variable yi. Consequently, we observe that the bangles
and bracelets defined in [9] form spanning sets and are linearly independent.
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2 Background

Cluster algebras are a type of recursively generated commutative ring with distinguished
generators, called cluster variables, that appear in fixed-size subsets x = (x1, . . . , xn) called
clusters. Each cluster x has an associated set of coefficients y = (y1, . . . , yn). Clusters can
be obtained from each other via an involutive process called mutation. A single mutation
µk uniquely exchanges a cluster variable xk ∈ x for some x′k ̸∈ x. The relation between
xk and x′k is referred to as an exchange relation. Given a cluster x, it is always possible to
mutate at every xi ∈ x. A single cluster is sufficient to generate the entire cluster algebra.

Two of the most celebrated properties of cluster algebras are the Laurent phenomenon
and positivity, which together state that every cluster algebra element can be written as
a Laurent polynomial with positive integer coefficients in terms of any choice of cluster.

Triangulated surfaces provide a well-known geometric model for ordinary cluster al-
gebras of surface type [3, 4]. Let S be a surface with (potentially empty) boundary and
a non-empty set of marked points M, where there is at least one marked point on each
boundary component. Marked points in the interior of S are referred to as punctures.
Every such marked surface (S, M) has an associated cluster algebra AS. Clusters of AS
correspond to distinct triangulations of (S, M), with individual cluster variables corre-
sponding to individual arcs (i.e., curves with endpoints in M and no self-intersections).
Coefficients correspond to laminations [4], i.e. additional collections of curves on (S, M)
that meet certain conditions. Following the restrictions in [8], we do not allow (S, M) to
be a closed surface with exactly two punctures, a monogon with less than two punctures,
an unpunctured bigon or triangle, or a sphere with less than four punctures.

In the surface model, mutation at xk is represented by flipping the corresponding arc γ

in a triangulation T - that is, by replacing γ with a different arc γ′, which corresponds to
x′k, such that T − {γ} ∪ {γ′} is still a valid triangulation. To provide complete geometric
models for cluster algebras from punctured surfaces [3] introduced the more general
notion of tagged arcs. A tagged arc is an arc whose ends have been tagged either plain or
notched such that: the arc does not cut out a once-punctured monogon, any end on ∂S is
tagged plain, and both ends of a loop have the same tagging.

If η is a tagged arc with endpoints p and q, we write η0 to denote the underlying plain
arc. If we wish to emphasize the notching of η, we will write η(p) when η has a single
notched end at p and η(pq) when η is notched at both endpoints. Two tagged arcs α and
β are compatible if and only if the following properties hold: the isotopy classes of α0 and
β0 contain non-intersecting representatives; if α0 = β0 then at least one end of α has the
same tagging as the corresponding end of β; and if α0 ̸= β0 have a shared endpoint, then
α and β must have the same tagging at that endpoint. A tagged triangulation is a maximal
collection of pairwise compatible tagged arcs. We will work with clusters associated to
triangulations with only plain arcs.
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Figure 1: An example of an arc γ1 and closed curve γ2 on a triangulated surface.

3 Cluster expansion formula

3.1 The poset for an arc

Let T = {τ1, . . . , τn} be a triangulation of a surface (S, M). For any arc γ on (S, M), we
construct a corresponding poset Pγ, following [11, 13]. We note that the posets Pγ will
be exactly the poset of join-irreducibles in the lattice of perfect matchings of the snake
graph Gγ, as in [8, 14].

First, suppose that γ is an arc with both endpoints tagged plain. Fix an orientation
for γ and let τi1 , . . . τid be the list of arcs of T crossed by γ, in the order determined by
our choice of orientation of γ. We will place a poset structure on [d] in the following way.
Any two consecutive arcs crossed by γ, τij and τij+1 , border a triangle ∆j that γ passes
through between these crossings. Let sj denote the shared endpoint of τij and τij+1 which
is a vertex of ∆j. If sj lies to the right of γ (with respect to the orientation placed on
γ), then we set j ⋗ j + 1. Otherwise, we set j ⋖ j + 1. The resulting poset is sometimes
referred to as a fence poset since its Hasse diagram is a path graph. The process is the
same if γ is a generalized arc, so that it has self-intersections.

Next, suppose that γ(p) is notched at its starting point s(γ) = p. Begin by drawing
the fence poset for γ0. Suppose the first triangle γ passes through is ∆0. Necessarily,
∆0 is bordered by τi1 and two spokes at p. Label these spokes σ1, σm where σ1 is the
clockwise neighbor of τi1 . Label the remaining spokes in clockwise order. Then, we
include elements 1s, . . . , ms in the poset, and set ms ⋖ (m − 1)s ⋖ · · · ⋖ 1s, 1s ⋗ 1 and
ms ⋖ 1. If we have an arc which is instead notched at its terminal point, we repeat this
process with elements 1t, . . . , mt, and we combine these processes for an arc tagged at
both endpoints. We call the resulting posets loop fence posets as they correspond to the
loop graphs given by Wilson in [14]. We say that the elements 1s, . . . , ms are in a loop. If
we wish to refer to a loop fence poset P with the loop portion removed, we will denote
this P0, so that Pγ0 = P0

γ.
Finally, suppose that γ is a closed curve. Choose an point a of γ which is not a point

of intersection between γ and T. Treat γ like an arc with s(γ) = t(γ) = a, choose an
orientation of γ, and form the fence poset on [d] associated to this arc. It must be that
τi1 and τid share an endpoint which is an endpoint of the triangle containing a. If this
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Table 1: The loop fence poset P
γ
(pq)
1

and circular fence poset Pγ2 for the arcs from

Figure 1. Note that the fence poset Pγ1 = P0
γ
(pq)
1

for the plain arc γ1 appears as a

subposet of P
γ
(pq)
1

, indicated in blue, and has aγ1 = eτ2 , bγ1 = 0, and rγ1 = eσ1 + eη1 .

endpoint is to the right of γ with the chosen orientation, we set d ⋗ 1; otherwise we set
d ⋖ 1. These posets are called circular fence posets since the underlying graph of such
a Hasse diagram is a cycle. To improve readability, we will often refer to all of these
types of posets as fence posets unless the specific type is relevant, in which case we use
the specific term. See Table 1 for several examples; note here and for the remainder of
the paper, we label the poset elements with the arcs they correspond to and we conflate
these two notions when context is clear.

3.2 Minimal Terms

Let aγ = (a1, . . . , an) where aj is the number of times there is a minimal element τik ∈ Pγ

such that τik = τj. Let bγ = (b1, . . . , bn) where bj is the number of times there is an
element τik ∈ Pγ which covers at least two elements and is not in a loop such that
τik = τj. Note that one or both of the elements which τik covers can be in a loop.

Suppose γ is an plain arc and there exists τi, τj ∈ T such that τi follows τ1 in clockwise
order in ∆0, the first triangle γ passes through, and similarly τj follows τd in clockwise
order in ∆d, the last triangle γ passes through. Then we set rγ = ei + ej where ei is the
i-th standard basis vector in Rn. If γ is instead notched at an endpoint or the clockwise
neighbor of τ1 or τd is on the boundary of (S, M), then we omit its contribution.

Given any arc or closed curve γ, we define gγ := −aγ + bγ + rγ. We remark that this
notation is inspired by the notation for the g-vector of a string module, as in [12].
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Geiß, Labardini-Fragoso, and Schröer studied these g-vectors for plain arcs and
closed curves in [6]. In particular, using Proposition 10.14 and Remark 11.1, they showed
that xgγ is the unique term in xT

γ which is not divisible by any variable yi. We show the
same statement for a notched arc γ.

Lemma 1. Let T be a triangulation of a surface without self-folded triangles. The monomial xgγ

is the unique term in the expansion of xT
γ which is not divisible by any variable yi.

Given an arc τi ∈ T, let xCCW(τi) = xτj xτk if there are two arcs τj, τk ∈ T that
are counterclockwise neighbors of τi within the two triangles that it borders. If one
or both of those neighbors is a boundary arc, then we ignore its contribution. The
monomial xCW(τi) is defined analogously using the clockwise neighbors of τi. We set
ŷτi := (xCCW(τi)/xCW(τi)) yτi . Let J(P) denote the poset of lower order ideals of a poset
Pγ. Each I ∈ J(P) has an associated weight w(I) = ∏j∈I ŷτij

.

Proposition 1. Let γ be an arc or closed curve on a marked surface (S, M) with triangulation
T such that γ /∈ T. Then, the associated element xγ of the cluster algebra A(S, M) written with
respect to the cluster corresponding to T can be expressed by

xT
γ = xgγ ∑

I∈J(Pγ)

w(I).

Proof. If γ is not an arc such that γ0 ∈ T, then this follows from combining Proposition
3.2 in [11] with Lemma 1. If γ ̸= γ0 and γ0 ∈ T, we prove this expansion formula by
using the algebraic identities that relate a singly-notched arc to plain arc and Theorem
12.9 in [8], which relates a doubly-notched arc to plain and singly-notched arcs.

Example 1. Applying Proposition 1 to the arc γ
(pq)
1 from Table 1 produces

x
γ
(pq)
1

=
xτ1 xτ3

xσ4 xτ2 xη3

[
xσ3yσ4yτ2

xσ1 x2
τ1

xτ3

+
xη1yη3

xτ1 x2
τ3

xη2

+
xσ3 xη1yσ4yη3

xτ1 xσ1 xτ3 xη2

+
yη2yη3

xτ3

+
xσ2 xσ3yσ3

xσ1 xσ4

+ · · ·
]

where we have explicitly shown only the terms arising from order ideals of size two.

4 Skein Relations

Let γ1 and γ2 be two curves with a point of incompatibility s; by this, we mean that
either γ1 and γ2 intersect, or γ0

1 ̸= γ0
2 share an endpoint and have opposite taggings at

the endpoint. In some cases, γ1 and γ2 cross the same set of arcs before or after passing
through s; if s is an intersection point, as we vary the representatives of γ1 and γ2 in their
isotopy classes, the point s can lie on any of these arcs. We call such a configuration a
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crossing overlap. When the set-up is understood, we refer to this set of commonly crossed
arcs as R.

If two arcs cross and this point of intersection is near the endpoint of one arc, then
when we form some of the arcs in the resolution, these will pivot at this endpoint. For
example, in the left diagram in Table 2, the left arc C− pivots across σ2 in counterclock-
wise direction and the right arc C− pivots across σ6 in clockwise direction. Some of these
pivots will also affect the y-monomial in the resolution. For a pair of crossing curves,
we define the sweep set, denoted Sw, to be the set of arcs that an arc in the resolution
pivots past in in clockwise (resp counterclockwise) direction at a plain (resp notched)
endpoint. Now suppose we instead have two arcs with incompatible taggings at a punc-
ture p. Suppose γ

(p)
1 is tagged at p and γ2 is not. Then, we define the sweep set to be

the set of arcs from T which lie counterclockwise of γ1 and clockwise of γ2. See Table 2
for examples.

Given two arcs with an incompatibility and associated sets R∪ Sw, one can show that
one of the sets of arcs in the resolution at the incompatibility will not cross any of the
arcs in R ∪ Sw. We will label the sets of arcs (called multicurves) in the resolution as C+

and C− where C− is the set which does not cross any arcs in R and Sw.

γ1

γ2

sσ1

σ2

σ3

σ4
σ5 σ6

σ7

C+

C+

C−C−

p = s

σ1

σ2σ3
σ4

σ5

σ6

γ
(p)
1γ2

C+

C−

R = {σ3, σ4, σ5} R = ∅
Sw = {σ6} Sw = {σ1, σ2, σ3, σ4}

Table 2: Examples of R and Sw for a transverse crossing (left) and an incompatibility
at a puncture (right).

Theorem 1. 1. Let {γ1, γ2} be a multicurve of arcs or closed curves which are incompatible.
Choose one point of incompatibility and let C+ and C− be the resolution at this intersection.
Then, xγ1 xγ2 = xC+ + YRYSwxC− .

2. Let γ1 be an arc or closed curve which is incompatible with itself. Choose one point of
incompatibility and let C+ and C− be the resolution at this intersection.
Then, xγ1 = xC+ + YRYSwxC− .

We prove Theorem 1 in cases. In section 4.1, we will explain our proof method which
can be used for all cases. In Sections 4.2 and 4.3, respectively, we will explicitly prove this
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Theorem for a pair of arcs with incompatible taggings at a puncture and a pair of arcs
with a transverse crossing. The relations that we explicitly discuss in these sections are
helpful in unifying some of the cases outlined in [9]. For example, the relation discussed
in 4.2 can be used to handle cases 6-11 from [9]. For the sake of brevity, we only include
explicit proofs for these two examples.

4.1 General approach

Let γ1 and γ2 be two curves with a point of incompatibility and resolutions C+ and C−.
Set Pi := Pγi and gi := gγi . In light of Proposition 1, we can write xγ1 xγ2 as

xg1+g2 ∑
(I1,I2)∈J(P1)×J(P2)

w(I1)w(I2).

We set w(I1, I2) to be the product of the weights of the components w(I1)w(I2). If C+ =
{γ3, γ4}, then we set J(C+) = J(P3)× J(P4); otherwise, C+ is a singleton {γ3} and we
set J(C+) = J(P3). We define J(C−) similarly. Our method of proof centers on finding
a partition of J(P1)× J(P2) = A ⊔ B such that (∅, ∅) ∈ A, and bijections ΦA between
A and J(C+) and ΦB between B and J(C−). Moreover, we require that the bijection
between A and J(C+) is weight-preserving, so that w(I1)w(I2) = w(ΦA(I1, I2)) and that
the bijection between B and J(C−) is weight preserving up to a unique monomial, so that
for some monomial Z in x and y variables, w(I1)w(I2) = Zw(ΦB(I1, I2)). Let Z = XY
be the decomposition of Z into x and y variables. The final step of each proof is to show
that g1 + g2 is equal to the sum of the g-vectors for the posets in C+ (denoted gC+) and
g1 + g2 + deg(X) is equal to the the sum of the g-vectors for the posets in C− (denoted
gC−) where deg(X) = (degxτ1

(X), . . . , degxτn
(X)). Then, we can rewrite xγ1 xγ2 as

= xg1+g2 ∑
(I1,I2)∈A

w(ΦA(I1, I2)) + xg1+g2 ∑
(I1,I2)∈B

Zw(ΦB(I1, I2))

= xgC+ ∑
I∈J(C+)

w(I) + xgC−Y ∑
I∈J(C−)

w(I) = xC+ + YxC− ,

where xC+ is the product of x variables associated to the arcs in C+ In each example, Z
will be a product of ŷ-variables that corresponds to the preimage of a tuple of emptysets
in J(C−). For part (2) of Theorem 1, we have similar statements with just one poset I1.
When resolving a self-intersection, it is possible for one arc to have a contractible kink,
in which case we remove the kink and multiply the associated expression by −1; in this
case, the bijections are adjusted to account for the difference in sign.
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4.2 Incompatibility at punctures

Consider two arcs, γ
(p)
1 and γ2 which are incompatible at a puncture p as on the right

hand side of Table 2. Recall from Section 2 that this means γ
(p)
1 and γ2 have opposite

taggings at p and γ0
1 ̸= γ0

2. Orient γ
(p)
1 and γ2 to both begin at p. Let the spokes at p

from T be σ1, . . . , σm, labeled in counterclockwise order such that the first triangle that
γ
(p)
1 passes through is bounded by σ1 and σm. If γ2 /∈ T, let 1 ≤ k ≤ m be such that the

first triangle γ2 passes through is bounded by σk and σk+1, where we interpret σm+1 as
σ1. If γ2 ∈ T, then we let k be such that γ2 = σk.

Draw a small circle h that encompasses p and does not cross any arcs of T except
the spokes at p. We define γ−1

1 ◦CCW γ2 as the arc which results from following γ1 from
t(γ1) with reverse orientation until its intersection with h, following h counterclockwise
until its intersection with γ2, and then following γ2 until t(γ2). We define γ−1

1 ◦CW γ2

similarly. Set γ3 := γ−1
1 ◦CCW γ2 and γ4 := γ−1

1 ◦CW γ2 and note that γ3 crosses σ1, . . . , σk
and γ4 crosses σk+1, . . . , σm. On the right hand side of Table 2, k = 4, γ3 is the arc denoted
C+ and γ4 is the arc denoted C−.

When k = m and γ2 /∈ T, so that the first triangles γ
(p)
1 and γ2 pass through are

the same, then we have two additional cases based on whether γ
(p)
1 is clockwise or

counterclockwise of γ2 at p. Since these cases produce different sets Sw, we differentiate
them. We refer to the case where γ

(p)
1 lies clockwise from γ2 as the k = 0 case.

It is only in the k = 0 and k = m cases when γ2 /∈ T that we will have a crossing
overlap. If τi1 , . . . , τid1

and τj1 , . . . , τjd2
are the ordered sequences of arcs from T crossed

by γ1 and γ2 respectively, and w ≥ 1 is the largest number such that τir = τjr for all
1 ≤ r ≤ w, then R = {τi1 , . . . , τiw}, regarded as a multiset. When γ2 ∈ T, then there is no
possible case for k = 0, and R = ∅ in the k = m case.

Proposition 2. Let γ
(p)
1 and γ2 be arcs which are incompatible at a puncture p. For k and R as

defined above, set

YR = ∏
τ∈R

yτ and YSw = ∏
σi∈Sw

yσi =
k

∏
i=1

yσi .

Then, we have x
γ
(p)
1

xγ2 = C+ + C− where C+ and C− are defined as follows:

C+ C−

k ̸= 0, m xγ3 YSwxγ4

k = 0 xγ4 YRxγ3

k = m xγ3 YSwYRxγ4

Proof. We detail the k ̸= 0, m and γ2 /∈ T case; the special cases follow from various
modifications to these overarching ideas. The posets P

γ
(p)
1

, Pγ3 and Pγ4 are provided in

Table 3; we suppress the poset Pγ2 as its structure is not important for the proof.



Skein relations for punctured surfaces 9

P
γ
(p)
1

Pγ3 Pγ4

· · ·τi1
σ1

σ2

...
σk

...

σm

· · · τi1
σ1

σ2
. .

.σk
τj1 · · · · · · τi1

σm

σm−1...
σk+1

τj1 · · ·

Table 3: Posets for a resolution of an incompatibility for the k ̸= 0, m cases. Recall that
τi1 is the first arc crossed by γ1 and γ2 is the first arc crossed by γ2.

Let A1 ⊆ J(P
γ
(p)
1
) × J(Pγ2) consist of all pairs (I1, I2) such that σk /∈ I1 and let A2

consist of all pairs such that σk ∈ I1, σk+1 /∈ I1, and τj1 ∈ I2. Let B be the complement of
A1 ⊔ A2; in other words, B consists of pairs (I1, I2) such that τj1 ∈ I2 only if σk+1 ∈ I1.

It is clear that A1 is in bijection with {I3 ∈ J(P3) : σk /∈ I3} and A2 is in bijection
with {I3 ∈ J(P3) : σk ∈ I3}, where this bijection sends each element to its image in Pγ3 .
Similarly, we have a bijection B ∼= Pγ4 which sends (I1, I2) ∈ B to (I1\⟨σk⟩) ∪ I2. The
description of B ensures that this set is an order ideal so that this map is well-defined.

We now compare the g-vectors. Let δτi1
>τi2

= 1 if τi2 exists and τi1 > τi2 . We have
that g

γ
(p)
1

= −eσ1 + δτi1
>τi2

eτi1
+ g′

1 where g′
1 involves contributions from τiℓ for ℓ > 1.

For simplicity, suppose τj1 < τj2 . Then, gγ2 = eσk − eτj1
+ g′

2 for similarly defined g′
2. We

see immediately that gγ3 = −eσ1 + eσk + δτi1
>τi2

eτi1
+ g′

1 − eτj1
+ g′

2 = g1 + g2. Now, we
compute gγ4 = −eσk+1 + eσm − (1 − δτi1

>τi2
)eτi1

+ g′
1 + g′

2, so that gγ4 − (g
γ
(p)
1

+ gγ2) =

eσm + eσ1 + eτj1
− eσk − eσk+1 − eτi1

. Let σ[i] denote the third arc in the triangle formed

by σi and σi+1. Then, from the definition, we have ŷσi = yσi

xσi−1 xσ[i]
xσi+1 xσ[i−1]

. One can see that

ŷσ1 · · · ŷσk = (yσ1 · · · yσk)
xσm xσ1 xσ[k]

xσk xσk+1 xσ[0]
, and the claim follows after noting that σ[k] = τj1 and

σ[0] = σ[m] = τi1 . One can repeat similar calculations if τj1 > τj2 .

4.3 Transverse Crossings

Here, we consider two arcs, γ1 and γ2 that have a point of intersection. For brevity, here
we will assume these arcs have a crossing overlap, so that R ̸= ∅. If not, we have two
more cases based on the fact that the point of intersection must occur in the first or last
triangle of one or both of the arcs.

We orient γ1 and γ2 so that they pass through the arcs in R in the same direction. With
our fixed point of intersection s, let γ1 ◦ γ2 denote the arc given by following γ1 along its
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orientation until s and then following γ2. Let γ3 = γ1 ◦ γ2, γ4 = γ2 ◦ γ1, γ5 = γ1 ◦ γ−1
2 ,

and γ6 = γ−1
2 ◦ γ1, where −1 denotes using the reverse orientation. Note that γ3 and γ4

both pass through R, though they do not have a crossing overlap here, while γ5 and γ6
avoid the intersections with the arcs in R. Therefore, C+ = {γ3, γ4} and C− = {γ5, γ6}.

Proposition 3. Let γ1 and γ2 be two arcs which intersect in a crossing overlap R. Let the
resolution be {γ3, γ4} ∪ {γ5, γ6}. Then,

xγ1 xγ2 = xγ3 xγ4 + YRYSwxγ5 xγ6

where YR = ∏τ∈R yτ and YSw = ∏τ∈Sw yτ.

In the proof, we will use a poset-theoretic version of a tool from [1]. Let posets P1 and
P2 have a crossing overlap in a region R. Index the elements in P1 ∩ R as P1(1), . . . , P1(m)
such that P1(i) only has cover relations with P1(i − 1) and P1(i + 1), when these exist,
and index the elements in P2 ∩ R analogously such that P1(i) and P2(i) are equivalent
for each i. Given I1 ∈ J(P1) and I2 ∈ J(P2), let the switching position be the smallest value
j such that P1(j) ∈ I1 if and only if P2(j) ∈ I2. One can show that a switching position
exists unless R ⊆ I1 and R ∩ I2 = ∅ or vice versa.

Proof. We say that a subset R of a poset P is on top if there is no j ∈ P\R such that j is
larger than an element in R and define a subset being on bottom similarly. One can show
that, when γ1 and γ2 have a crossing overlap, up to relabeling, R1 is on top and R2 is
on bottom. In the following, suppose that γ1 crosses arcs α1, . . . , αd1 in T and γ2 crosses
η1, . . . , ηd2 . We assume that these arcs have a crossing overlap in regions R1 ⊆ P1 and
R2 ⊆ P2. Let 1 ≤ s ≤ t ≤ d1 and 1 ≤ s′ ≤ t′ ≤ d2 be such that R1 = {αs, . . . , αt} and
R2 = {ηs′ , . . . , ηt′}.

We focus on one case which includes a nonempty set Sw as an illustrative proof. We
will omit discussion of g-vectors as the previous proof already illustrated all relevant
ideas. Suppose s′ = 1 and s(γ2) is notched. It must be that s > 1 in order for γ1
and γ2 to have an intersection. Necessarily, the arc αs−1 is a spoke incident to the
puncture s(γ2). Index this set of spokes as σ1, . . . , σm in counterclockwise order such
that αs−1 = σ1. Suppose that γ1 crosses σ1, . . . , σk and let β be the arc which γ1 crosses
right before crossing σk, if it exists. We will assume t < d1 and t′ < d2; we can repeat
these arguments two times if we also have one of these cases. Table 4 provides the posets
P1, P2, P5, and P6. If β does not exist, then P5 is the chain between σk+1 and σk−1, with
order as in the Table. The poset P3 is obtained by taking P1 and replacing R1 > αt+1 with
R3 < ηt′+1 and P4 is obtained dually from P2.

We set A to be the union of pairs (I1, I2) such that one of the following holds: (1)
there is a switching position between R1 and R2, (2) R1 ⊆ I1 and R2 ∩ I2 = ∅, (3)
R2 ⊆ I2, R1 ∩ I1 = ∅, αt+1 ∈ I1 and ηt′+1 /∈ I2, or (4) R2 ⊆ I2, R1 ∩ I1 = ∅, αt+1 /∈ I1,
σk ∈ I2 only if β ∈ I1 and σk+1 /∈ I2 if the highest element σm is in I1. If β does not exist,
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P1 P2 P5 P6

· · ·

σk
. . .

σ2
σ1

R1

αt+1

β

· · · σ1

σ2

...
σm

R2

ηt′+1 · · ·

σk+1

...
σm

σ1

...
σk

β · · · αt+1

ηt′+1

· · ·

· · ·

Table 4: Some of the posets for a resolution of a transverse crossing between γ1 and γ2

the condition involving β is removed. We define ΦA as follows. If (I1, I2) has a switching
position, which is j in R1 and j′ in R2, then we set ΦA(I1, I2) = (I3, I4) where I3 is the
result of taking all elements of I1 up to αj and all elements of I2 after ηj′ and I4 is the
result of taking all elements of I2 up to ηj′ and all elements of I1 after αj. Since αj ∈ I1
if and only if ηj′ ∈ I2, these form order ideals. If a pair (I1, I2) is from item (2) we send
R1 to R3, if from item (3) we send R2 to R4, and if from item (4) we send R2 to R3. Some
of the elements σi do not have one clear image in P3 × P4, so care is taken in these latter
items to send them to appropriate places so that the resulting sets are still order ideals.

We let B be the complement of A in J(P1) × J(P2); explicitly, B is the set of tuples
such that R1 ∩ I1 = ∅, R2 ∪ ⟨σk⟩ ⊆ I2, αt+1 ∈ I1 only if ηt′+1 ∈ I2, and β ∈ I1 only if
σk+1 ∈ I2. Our definition of B implies that the restrictions of I1 ⊔ (I2\(R2 ∪ ⟨σk⟩)) to P5
and P6 are order ideals. This defines our bijection ΦB.

5 Implications

In [9], given a surface (S, M), Musiker, Schiffler, and Williams define two sets of arcs,
bangles C◦ and bracelets C, and show that the set of elements of AS arising from each
(B◦ and B respectively) forms a basis of AS. They leave as a question whether these sets
could also give the basis of AS when (S, M) has punctures; the lack of skein relations in
the punctured setting is a large reason why they did not extend their basis to this case.

Our skein relations show that a product xγ1 xγ2 of incompatible arcs can be written
in terms of B◦ and of B, which shows that these sets are still spanning in the punctured
case. Moreover, because our relations are always of the form xγ1 xγ2 = xC+ + YxC− , we
know that Lemma 6.3 from [9] remains true. As explained in Section 8.5 of the same
article, this will show that these sets are also linearly-independent.

Lemma 2. Let γ1 and γ2 be multicurves with at least one point of incompatibility on (S, M).
Then the expansion

xγ1 xγ2 = ∑
i

Yi Mi,
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where Mi ∈ B◦ and the Yi represent monomials in the coefficient variables, has a unique index j
such that Yj = 1.

As future work, it remains for us to verify that B and B◦ are still subsets of AS.
Although we expect this to be true, it is non-trivial to prove and will, as a consequence,
complete the proof that B and B0 remain bases in the punctured setting.
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