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The doubly asymmetric simple exclusion process,
the colored Boolean process, and the restricted

random growth model
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Abstract. The multispecies asymmetric simple exclusion process (mASEP) is a Markov
chain in which particles of different species hop along a one-dimensional lattice. This
paper studies the doubly asymmetric simple exclusion process DASEP(n, p, q) in which
q particles with species 1, . . . , p hop along a circular lattice with n sites, but also the
particles are allowed to spontaneously change from one species to another. In this
paper, we introduce two related Markov chains called the colored Boolean process and
the restricted random growth model, and we show that the DASEP lumps to the col-
ored Boolean process, and the colored Boolean process lumps to the restricted random
growth model. This allows us to generalize a theorem of David Ash on the relations
between sums of steady state probabilities. We also give explicit formulas for the
stationary distribution of DASEP(n, 2, 2).
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1 Introduction

The asymmetric simple exclusion process (ASEP) is a model from statistical mechanics
introduced by Macdonald-Gibbs-Pipkin [12] and Spitzer [17], which describes a Markov
chain for particles hopping left or right along a one-dimensional lattice such that each
site contains at most one particle. It can be used to model traffic flow or translation in
protein synthesis. There are many variations of the ASEP: the lattice can have open, half
open, closed, or periodic boundaries, and there can be reservoirs (see Liggett [10, 11]).
Particles can exhibit different species, and this variation is called the multispecies ASEP
(mASEP). The asymmetry can be partial, so that particles are allowed to hop both left and
right, but one side is t times more probable, and this is called the partially asymmetric
exclusion process (PASEP). The ASEP is closely related to a growth model defined by
Kardar-Parizi-Zhang [8], and various methods have been invented to study the ASEP,
such as the matrix ansatz introduced by Derrida et al. in [5]. The combinatorics of the
ASEP was studied by many people, see [2, 3, 4, 7, 13].
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Let λ = (λ1, . . . , λn) be a partition with λ1 ≥ · · · λn ≥ 0, |λ| be the sum of all parts
of λ, and mi = mi(λ) := #{j : λj = i} be the number of parts of λ that equal i. We
also denote λ by 1m12m2 · · · . Let ℓ(λ) = ∑i mi(λ) denote the length of λ. We write
Sn(λ) as the set of all weak compositions obtained from permuting the parts of λ. The
mASEP can be thought of a Markov chain on Sn(λ) [4, Definition 1.2], or a coupling of
multiple ASEP [13]. The stationary distribution of the mASEP is related to Macdonald
polynomials [4] and multiline queues [7].

Let n be the number of sites on the lattice, p be number of types of species, and q
be the number of particles. David Ash [1] defined the doubly asymmetric simple exclusion
process DASEP(n, p, q). The DASEP is a variant of the mASEP but also allows particles
to spontaneously change species. This might be applied to biology models involving
evolutions, or traffic flow problem that also tracks the gears of the cars. If p = 1,
DASEP(n, 1, q) is the usual 1-species PASEP on a ring.

Definition 1. [1] Let n, p, q be positive integers with n > q, and let u, t ∈ [0, 1) be
constants. The doubly asymmetric simple exclusion process DASEP(n, p, q) is a Markov chain
on the set of words (or weak compositions) of length n in 0, . . . , p with n − q zeros:

Γp,q
n =

⋃
λ1≤p,
ℓ(λ)=q

Sn(λ) =
⋃

m1+···+mp=q
Sn(1m1 · · · pmp).

The transition probability P(µ, ν) on two states µ and ν is as follows:

• If µ = AijB and ν = AjiB (where A and B are words in 0, . . . , p) with i ̸= j, then
P(µ, ν) = t

3n if i > j and P(µ, ν) = 1
3n if j > i.

• If µ = iAj and ν = jAi with i ̸= j, then P(µ, ν) = t
3n if j > i and P(µ, ν) = 1

3n if
i > j.

• If µ = AiB and ν = A(i + 1)B with i ≤ p − 1, then P(µ, ν) = u
3n .

• If µ = A(i + 1)B and ν = AiB with i ≥ 1, then P(µ, ν) = 1
3n .

• Otherwise P(µ, ν) = 0 for µ ̸= ν and P(µ, µ) = 1 − ∑ν ̸=µ P(µ, ν).

Remark 1. There is an inherent cyclic symmetry in the definition, so that a state has the
same dynamic under any cyclic permutation.

This Markov chain is irreducible and aperiodic, so it has a unique stationary distri-
bution π given by rational functions in u, t, which satisfies the global balance equations
π(µ)∑ν ̸=µ P(µ, ν) = ∑ν ̸=µ π(ν)P(ν, µ) for any state µ. For convenience, we clear the
denominators and obtain the “unnormalized steady state probabilities" πDASEP which
are proportional to the stationary distribution by a factor of the partition function Zp,q

n =
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Figure 1: The state diagram of DASEP(2, 2, 1) and DASEP(3, 2, 2). Bold edges de-
note changes in species, while regular edges denote exchanges of particles of different
species or between particles and holes.

∑µ∈Γp,q
n

πDASEP(µ). We require the unnormalized steady state probabilities to be coprime
so they are uniquely defined.

Our first main result concerns the ratio between the sums of certain sets of πDASEP(µ).
For each partition λ with length q and each binary word w = (w1, . . . , wn) with q ones
and n − q zeros, define

Sw
n (λ) := {µ ∈ Sn(λ)|µi ̸= 0 if and only if wi ̸= 0}

as the equivalence class of weak compositions µ obtained from permuting λ whose sup-
port is equal to w. Then we have |Sn(1m1 · · · pmp)| = ( n

n−q,m1,...,mp
) and |Sw

n (1m1 · · · pmp)| =
( q

m1,m2,...,mp
).

Theorem 1. Consider DASEP(n, p, q) for any positive integers n, p, q with n > q.

(1) For any two binary words w, w′ ∈ ([n]q ), we have πDASEP(w) = πDASEP(w′).

(2) For any binary word w ∈ ([n]q ) and partition λ = 1m12m2 · · · pmp with m1 + · · ·+mp = q,
we have

∑
µ∈Sw

n (λ)

πDASEP(µ) = u|λ|−q
(

q
m1, m2, . . . , mp

)
πDASEP(w).

In other words, the average of steady state probabilities over orbits of Sq-action on
the particles are all equal up to a power of u. This is a polynomial generalization of a
combinatorial phenomenon called homomesy defined by Propp and Roby, see[14].
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µ πDASEP(µ)
011 u + 3t + 4
012 u(u + 4t + 3)
021 u(u + 2t + 5)
022 u2(u + 3t + 4)

µ πDASEP(µ)
0011 u + 2t + 3
0101 u + 2t + 3
0022 u2(u + 2t + 3)
0202 u2(u + 2t + 3)
0012 u(u + 3t + 2)
0102 u(u + 2t + 3)
0021 u(u + t + 4)

Table 1: The unnormalized steady state probabilities of DASEP(3, 2, 2) and
DASEP(4, 2, 2). We present all states up to cyclic symmetry.

Remark 2. In the special case of DASEP(3, p, 2), Theorem 1 was proved by David Ash
[1, Theorem 5.2].

Example 1. For the partition λ = (2, 1, 0) with |λ| = 2 + 1 = 3, we have S011
3 ((2, 1, 0)) =

{012, 021} and |S011
3 ((2, 1, 0))| = ( 2

1,1) = 2; also S3((2, 1, 0)) = {012, 021, 102, 201, 120, 210}
and |S3((2, 1, 0))| = ( 3

1,1,1) = 6.

The following are direct corollaries of Theorem 1.

Corollary 1. For the DASEP(n, p, q) defined by positive integers n, p, q, n > q, and λ, µ two
partitions with λ1 ≤ p, µ1 ≤ p, ℓ(λ) = ℓ(µ) = q, we have

∑ν∈Sn(λ) πDASEP(ν)

∑ν∈Sn(µ) πDASEP(ν)
=

|Sn(λ)|
|Sn(µ)|

u|λ|−|µ|.

Let t = 1, then our model is symmetric, dubbed the “doubly symmetric simple
exclusion process (DSSEP)". It is a generalization of the model considered by Salez in
[15], which is an exclusion process on a graph (a circle in our case) with a reservoir of
particles at each vertex. Recall that [p + 1]u = 1 + u + · · ·+ up denotes the u analog of
the integer p + 1. For DSSEP, it follows from Theorem 1 that

Corollary 2. The partition function of DSSEP(n, p, q) is(
n
q

)
(1 + u + · · ·+ up)q =

(
n
q

)
([p + 1]u)q.

Example 2. For DASEP(3, 2, 2), by Theorem 1, we have πDASEP(012) + πDASEP(021) =
2uπDASEP(011) and πDASEP(022) = u2πDASEP(011) which can be seen from Table 1.

Similarly, for DASEP(4, 2, 2), Theorem 1 asserts that πDASEP(0011) = πDASEP(0101),
πDASEP(0012) + πDASEP(0021) = 2uπDASEP(0011) and πDASEP(0102) + πDASEP(0201) =
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2uπDASEP(0011). Since 0201 is a cyclic permutation of 0102, their steady state probabili-
ties are equal by Remark 2, and Table 1 shows that it is equal to uπDASEP(0101).

To prove Theorem 1, we introduce a new Markov chain that we call colored Boolean
process (see Definition 2), and we show that DASEP lumps is a colored Boolean process.
This gives a relationship between the stationary distribution of the colored Boolean pro-
cess and the DASEP; see Theorem 2.

In Theorem 6, we give explicit formulas for the stationary distributions of the infi-
nite family DASEP(n, 2, 2), n ≥ 3 which depend on whether n is odd or even. Both are
described by polynomial sequences given by a second-order homogeneous recurrence
relation (see Theorem 6). The polynomials sequences are generating functions of match-
ings of certain graphs (see Figure 4 and Figure 5). When specialized to u = t = 1,
the polynomial sequences specialize to trinomial transform of Lucas number A082762
and binomial transform of the denominators of continued fraction convergents to

√
5

A084326 [16].
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2 The DASEP lumps to the colored Boolean process

In this section, we define the colored Boolean process, and we show that the DASEP lumps
to the colored Boolean process. We compute the ratios between steady states probabilities
in the colored Boolean process, leading us to understand the ratios between sums of
steady state probabilities of the DASEP.

Definition 2. The colored Boolean process is a Markov chain dependent on three positive
integers n, p, q with n > q on the set of pairs of binary words and partition in a q × p
rectangle

Ωp,q
n = {(w, λ)|w ∈

(
[n]
q

)
, λ1 ≤ p, ℓ(λ) = q}

with the following transition probabilities:

• Q((w, λ), (w, λ′)) = mi(λ)u
3n if λ′ is obtained from λ by changing a part equal to

i < p to a part equal to i + 1, denoted by λ ↗i λ′.

• Q((w, λ), (w, λ′)) = mi(λ)
3n if λ′ is obtained from λ by changing a part equal to i > 1

to a part equal to i − 1, denoted by λ ↘i λ′.

https://oeis.org/A082762
https://oeis.org/A084326


6 Yuhan Jiang

• Q((w, λ), (w′, λ)) = 1
3n if w′ is obtained from w by 01 → 10 in a unique position,

allowing wrap-around at the end.

• Q((w, λ), (w′, λ)) = t
3n if w′ is obtained from w by 10 → 01 at a unique position,

allowing wrap-around at the end.

• If none of the above applies but w ̸= w′ or λ ̸= λ′, then Q((w, λ), (w′, λ′)) = 0.
Otherwise Q((w, λ), (w, λ)) = 1 − ∑(w′,λ′) ̸=(w,λ) Q((w, λ), (w′, λ′)).

We denote the stationary distribution of Ωp,q
n by πCBP. We think of parts of different

sizes as particles of different colors, or species; hence the name.
The relation between the colored Boolean process and the DASEP is captured by the

following notion.

Definition 3. [9, Section 6.3] Let {Xt} be a Markov chain on state space ΩX with transi-
tion matrix P, and let f : ΩX → ΩY be a surjective map. Suppose there is an |ΩY| × |ΩY|
matrix Q such that for all y0, y1 ∈ ΩY, if f (x0) = y0, then

∑
x: f (x)=y1

P(x0, x) = Q(y0, y1).

Then { f (Xt)} is a Markov chain on ΩY with transition matrix Q. We say that { f (Xt)} is
a lumping of {Xt}.

We may use the stationary distribution of {Xt} to compute that of its lumping.

Proposition 1. [9, Section 6.3] Suppose p is a stationary distribution for {Xt}, and let π be
the measure on ΩY defined by π(y) = ∑x: f (x)=y p(x). Then π is a stationary distribution for
{ f (Xt)}.

Theorem 2. The projection map on state spaces f : Γp,q
n → Ωp,q

n sending each µ to (w, λ) if
µ ∈ Sw

n (λ) is a lumping of DASEP(n, p, q) onto the colored Boolean process Ωp,q
n .

It follows from Proposition 1 that the unnormalized steady state probabilities of the
colored Boolean process are proportional to the sums of the unnormalized steady state
probabilities of the DASEP as follow:

πCBP(w, λ) ∝ ∑
µ∈Sw

n (λ)

πDASEP(µ).

Proof. Fix (w0, λ0) and (w1, λ1), we want to show that for any µ0 ∈ Sw0
n (λ0), the quantity

∑µ:µ∈S
w1
n (λ1)

P(µ0, µ) is independent of the choice of µ0 and equal to Q((w0, λ0), (w1, λ1)).
We may assume (w0, λ0) ̸= (w1, λ1). Note that this quantity is nonzero only in the
following cases:
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(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

Figure 2: Transition diagram of Ω2,2
3 , as a lumping of DASEP(3, 2, 2) as shown on the

right hand side in Figure 1. The bold edges denote the changes of species, while the
regular edges denote the exchanges between particles of different species or between
particles and holes.

• If w0 = w1 and there exists a unique i < p such that λ0 ↗i λ1, we increase the
species of a particle from i to i + 1, and there are mi ways to do it. For each
µ ∈ Sw1

n (λ1), we have P(µ0, µ) = u
3n , so their sum is equal to miu

3n .

• If w0 = w1 and there exists a unique i > 1 such that λ0 ↘i λ1, we decrease the
species of a particle from i to i − 1, and there are mi ways to do it, so the quantity
is equal to mi

3n .

• If λ0 = λ1 and w1 is obtained from w0 by 01 → 10 or 10 → 01 at a unique position
(allow wraparound). This quantity is equal to 1

3n or t
3n respectively.

Theorem 3. Consider the colored Boolean process Ωp,q
n .

(1) The steady state probabilities of all binary words with the trivial partition are equal, i.e.,

πCBP(w, 0n−q1q) = πCBP(w′, 0n−q1q), for all w, w′ ∈
(
[n]
q

)
.

(2) The steady state probability of an arbitrary state (w, λ) can be expressed in terms of the
steady state probability of the corresponding state (w, 0n−q1q) with the trivial partition
0n−q1q as follows:

πCBP(w, λ) = u|λ|−q
(

q
m1, . . . , mp

)
πCBP(w, 0n−q1q). (2.1)
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Proof. Since the colored Boolean process is irreducible, it suffices to verify the global
balance equations. For simplicity of notation, denote πCBP(w, λ) by pw,λ. Let bw be the
number of blocks of consecutive 1’s in w (allowing wrap-around).

We first check it for the states given by a binary word and the trivial partition λ0 =
0n−q1q. Notice that any occurrence of 01 in w must begin a block, and any occurrence of
10 must signify the end of a block. The balance equation at (w, 0n−q1q) is

(qu + bw + bwt)pw,λ0 = qpw,1q−12 + bwt ∑
w′→w
10→01

pw′,λ0 + bw ∑
w′′→w
01→10

pw′′,λ0 . (2.2)

Since ( q
q−1,1) = 1, we are left with

bw(1 + t)pw = bwt ∑
w′→w
10→01

pw′ + bw ∑
w′′→w
01→10

pw′′

which will be satisfied if we set all pw’s to be equal.
For arbitrary partition λ = 1m12m2 · · · pmp , the left hand side of the balance equation

at (w, λ) is
((m1 + · · ·+ mp−1)u + m2 + · · ·+ mp + bw + bwt)pw,λ

These account for all the states that (w, λ) can transition to.
The right hand side of the balance equation at (w, λ) is

∑
i<p,λ↗iλ′

(mi+1 + 1)pw,λ′ + ∑
i>1,λ↘iλ′′

(mi−1 + 1)upw,λ′′ + bwt ∑
w′→w
10→01

pw′,λ + bw ∑
w′′→w
01→10

pw′′,λ

These account for all the states that can transition into (w, λ). Using Equation (2.1), the
multinomial coefficients give

pw,λ′

pw,λ
=

miu
mi+1 + 1

, λ ↗i λ′ =⇒ mi(λ
′) = mi − 1, mi+1(λ

′) = mi+1 + 1, ∀i < p

pw,λ′′

pw,λ
=

mi

(mi−1 + 1)u
, λ ↘i λ′′ =⇒ mi(λ

′′) = mi − 1, mi−1(λ
′′) = mi−1 + 1, ∀i > 1.

Then we have a term by term equality for each i where a corresponds to the first sum-
mation and b corresponds to the second.

Proof of Theorem 1. This follows directly from Theorem 2 and Theorem 3.

3 The colored Boolean process lumps to the restricted ran-
dom growth model

In this section, we define the restricted random growth model, which is a Markov chain on
the set of Young diagrams inside a rectangle. We show that the colored Boolean process
lumps to the restricted random growth model.
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Figure 3: Transition diagram of the restricted random growth model on χ2,2. The
Markov chain on the left can be viewed as a lumping of the Markov chain on the right
by rearranging boxes into weakly decreasing order.

Definition 4. Define the restricted random growth model on the the set χp,q = {λ : λ1 ≤
p, ℓ(λ) = q} of all partitions that fit inside a q× p rectangle but do not fit inside a shorter
rectangle, with transition probabilities as follows:

• If ν ↗i λ, then Pr(ν, λ) = mi(ν)u
3n .

• If ν ↘i λ, then Pr(ν, λ) = mi(ν)
3n .

• Otherwise if ν ̸= λ, then Pr(ν, λ) = 0 and Pr(λ, λ) = 1 − ∑ν:ν ̸=λ Pr(ν, λ).

We denote the unnormalized steady state probability of the restricted random growth
model by πRRG.

For two partitions λ and λ′, if λ ↗i λ′, then the Young diagram of λ′ is obtained
from the Young diagram of λ by adding a corner box to the topmost row of length
i. If λ ↘i λ′, then we remove the corner box from the topmost row of length i. In
other words, the restricted random growth model either adds or removes a box from a
uniformly chosen part of the Young diagram of the partition (conditioned on staying in
the q × p rectangle) as shown on the right hand side of Figure 3, then rearrange the parts
in weakly decreasing order as shown on the left hand side of Figure 3. Random growth
models are of independent interests and have been studied by many people [6].

Theorem 4. The projection map on state spaces Ωp,q
n → χp,q sending (w, λ) to λ (forgetting the

positions of 0’s) is a lumping of the colored Boolean process to the restricted random growth.

It follows from Proposition 1 that

πRRG(λ) ∝ ∑
w∈([n]q )

πCBP(w, λ).
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Proof. By Definition 3, we need to show that for any ν ̸= λ and binary word w the
following equation holds:

Pr(ν, λ) = ∑
w′

Q((w, ν), (w′, λ)).

Then Q((w, ν), (w′, λ)) ̸= 0 only if w = w′ by Definition 2, and this quantity is either
mi(ν)u

3n when ν ↗i λ or mi(ν)
3n when ν ↘i λ.

Theorem 5. The steady state probabilities of the restricted random growth satisfy the following
relations for all partitions ν, λ ∈ χp,q:

πRRG(λ)

πRRG(ν)
=

|Sn(λ)|
|Sn(ν)|

u|λ|−|ν|.

Proof. This follows from Theorem 4 and Theorem 3 and a computation on multinomial
coefficients.

Proof of Corollary 1. This follows from Theorem 4 and Theorem 5.

Proof of Corollary 2. When t = 1, for any partition λ and for any two weak compositions
µ, ν ∈ Sn(λ), we have πDASEP(µ) = πDASEP(ν). By Theorem 5 and the requirement for
unnormalized steady state probabilities to be coprime, we see that the partition function
of DSSEP is

∑
λ1≤p,
ℓ(λ)=q

u|λ||Sn(λ)| =
(

n
q

)
∑

m1+···+mp=q
um1+2m2···pmp

(
q

m1, . . . , mp

)
=

(
n
q

)
(1 + u + · · ·+ up)q.

4 The stationary distribution of DASEP(n,2,2)

In this section, we give a complete description of the stationary distributions when there
are two particles and two species, while the number of sites can be arbitrary.

t+ 1 t+ 1 t+ 1 u+ 1

Figure 4: a1 = u + 3t + 4
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• • •
t+ 1

• • •
t+ 1

• • •
u+ 1

Figure 5: b1 = u + 2t + 3

µ πDASEP(2k+1,2,2)(µ)

Sn((1, 1, 0, . . . , 0)) ak
0 . . . 010m20 . . . 0 uak + u(t − 1)(t + 1)mak−m−1, (0 ≤ m < k)
0 . . . 020m10 . . . 0 uak − u(t − 1)(t + 1)mak−m−1, (0 ≤ m < k)

Sn((2, 2, 0, . . . , 0)) u2ak

Table 2: The unnormalized steady state probabilities of DASEP(2k + 1, 2, 2).

µ πDASEP(2k+2)(µ)

Sn((1, 1, 0, . . . , 0)) bk
0 . . . 010m20 . . . 0 ubk + u(t − 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)
0 . . . 020m10 . . . 0 ubk − u(t − 1)(t + 1)mbk−m−1, (0 ≤ m ≤ k)

Sn((2, 2, 0, . . . , 0)) u2bk

Table 3: The unnormalized steady state probabilities of DASEP(2k + 2, 2, 2).

Let (ak)k≥0 and (bk)k≥−1 be polynomial sequences in u, t satisfying the recurrence
relation

ak = (u + 2t + 3)ak−1 − (t + 1)2ak−2

bk = (u + 2t + 3)bk−1 − (t + 1)2bk−2.

with initial conditions b−1 = 0, a0 = b0 = 1, a1 = u + 3t + 4.

Theorem 6. Consider matchings M in the cycle C2k+1 or the path L2k+1 with (2k + 1) vertices.
Assign each matching M a weight of (t + 1)|M|(u + 1)k−|M|. Then the stationary distributions
of DASEP(2k+ 1, 2, 2) and DASEP(2k+ 2, 2, 2) are given by Table 2 and Table 3 where ak is the
generating function of the matchings in C2k+1, and bk is the generating function of the matchings
in L2k+1, i.e.,

ak = ∑
M:C2k+1

(t + 1)|M|(u + 1)k−|M|

bk = ∑
M:L2k+1

(t + 1)|M|(u + 1)k−|M|.



12 Yuhan Jiang

References

[1] D. W. Ash. “Introducing DASEP: the doubly asymmetric simple exclusion process”. 2023.
arXiv:2201.00040.

[2] R. A. Blythe, W. Janke, D. A. Johnston, and R. Kenna. “The grand-canonical asymmetric
exclusion process and the one-transit walk”. J. Stat. Mech. Theory Exp. 6 (2004), pp. 001, 10.

[3] R. Brak and J. W. Essam. “Simple asymmetric exclusion model and lattice paths: bijections
and involutions”. J. Phys. A 45.49 (2012), pp. 494007, 22. doi.

[4] S. Corteel, O. Mandelshtam, and L. Williams. “From multiline queues to Macdonald poly-
nomials via the exclusion process”. Amer. J. Math. 144.2 (2022), pp. 395–436. doi.

[5] B Derrida, M. R. Evans, V Hakim, and V Pasquier. “Exact solution of a 1D asymmetric
exclusion model using a matrix formulation”. Journal of Physics A: Mathematical and General
26.7 (1993), p. 1493. doi.

[6] P. L. Ferrari and H. Spohn. “Random growth models”. The Oxford handbook of random matrix
theory. Oxford Univ. Press, Oxford, 2011, pp. 782–801.

[7] P. A. Ferrari and J. B. Martin. “Stationary distributions of multi-type totally asymmetric
exclusion processes”. Ann. Probab. 35.3 (2007), pp. 807–832. doi.

[8] M. Kardar, G. Parisi, and Y.-C. Zhang. “Dynamic Scaling of Growing Interfaces”. Phys.
Rev. Lett. 56 (9 1986), pp. 889–892. doi.

[9] J. G. Kemeny and J. L. Snell. Finite Markov chains. Undergraduate Texts in Mathematics.
Reprinting of the 1960 original. Springer-Verlag, New York-Heidelberg, 1976, pp. ix+210.

[10] T. M. Liggett. “Ergodic theorems for the asymmetric simple exclusion process”. Trans.
Amer. Math. Soc. 213 (1975), pp. 237–261. doi.

[11] T. M. Liggett. Interacting particle systems. Vol. 276. Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New
York, 1985, pp. xv+488. doi.

[12] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin. “Kinetics of biopolymerization on nucleic
acid templates”. Biopolymers 6.1 (1968), pp. 1–25. doi.

[13] J. B. Martin. “Stationary distributions of the multi-type ASEP”. Electron. J. Probab. 25 (2020),
Paper No. 43, 41. doi.

[14] J. Propp and T. Roby. “Homomesy in products of two chains”. Electron. J. Combin. 22.3
(2015), Paper 3.4, 29. doi.

[15] J. Salez. “Universality of cutoff for exclusion with reservoirs”. Ann. Probab. 51.2 (2023),
pp. 478–494. doi.

[16] N. J. A. Sloane and T. O. F. Inc. “The on-line encyclopedia of integer sequences”. 2020.
Link.

[17] F. Spitzer. “Interaction of Markov processes”. Advances in Math. 5 (1970), pp. 246–290. doi.

https://arxiv.org/abs/2201.00040
https://dx.doi.org/10.1088/1751-8113/45/49/494007
https://dx.doi.org/10.1353/ajm.2022.0007
https://dx.doi.org/10.1088/0305-4470/26/7/011
https://dx.doi.org/10.1214/009117906000000944
https://dx.doi.org/10.1103/PhysRevLett.56.889
https://dx.doi.org/10.2307/1998046
https://dx.doi.org/10.1007/978-1-4613-8542-4
https://dx.doi.org/https://doi.org/10.1002/bip.1968.360060102
https://dx.doi.org/10.1214/20-ejp421
https://dx.doi.org/10.37236/3579
https://dx.doi.org/10.1214/22-aop1600
http://oeis.org/?language=english
https://dx.doi.org/10.1016/0001-8708(70)90034-4

	Introduction
	The DASEP lumps to the colored Boolean process
	The colored Boolean process lumps to the restricted random growth model
	The stationary distribution of DASEP(n,2,2)

