
Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #71, 9 pp. Series and Algebraic Combinatorics (Bochum)

Real matroid Schubert varieties, zonotopes, and
virtual Weyl groups
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Abstract. We show that the matroid Schubert variety of a real hyperplane arrangement
is homeomorphic to the zonotope of the arrangement with parallel faces identified.
Using this explicit model, we compute the homology and fundamental group of the
matroid Schubert variety in terms of combinatorial data of the underlying oriented
matroid. When the hyperplane arrangement is a Coxeter arrangement, we show that
the equivariant fundamental group is a virtual analogue of the associated Weyl group.
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1 Introduction

Several recent breakthroughs in matroid theory have come from understanding the
topology of certain algebraic varieties associated to hyperplane arrangements. One such
variety is the matroid Schubert variety, which compactifies the ambient vector space of
a central essential hyperplane arrangement. Originally studied by Ardila–Boocher [1]
and Li [8], it has most notably found applications to the Dowling–Wilson top-heavy
conjecture for representable matroids [5].

We study the topology of matroid Schubert varieties YA associated with real hyper-
plane arrangements A. The main result is an explicit homeomorphism from YA to a
natural quotient of the zonotope associated with A. As a consequence, we obtain pre-
sentations for the homology and fundamental group of YA that depend only on the
oriented matroid data of A. When A is a Coxeter arrangement, we also show that the
equivariant fundamental groups are of independent interest. We call them virtual Weyl
groups, since they are quotients of virtual Artin groups [3] (which themselves generalise
the virtual braid group in type A).

Full details of the results in this extended abstract will be presented as part of the
forthcoming paper [7].

*ljiang@math.toronto.edu

mailto:ljiang@math.toronto.edu


2 Leo Jiang

2 Setup

Let V be a finite-dimensional vector space over a field F, and let A = (αe)e∈E ∈ (V∗)E

be a representation of an F-linear matroid M with (finite) ground set E. The rank of
S ⊆ E is rk S = dim span{αe : e ∈ S}, and a flat of M is a subset F ⊆ E that is not
strictly contained in another subset of the same rank. Flats of M are partially ordered by
inclusion, and this poset is in fact a geometric lattice L(M) called the lattice of flats of M.

Remark 1. The αe should be thought of as defining hyperplanes He = ker αe ⊆ V. When
M is simple, the αe are all nonzero and no two are parallel. In this case, M is the matroid
associated to the central hyperplane arrangement determined by the He.

For every F ∈ L(M), define the subspace VF =
⋂

e∈F ker αe ⊆ V. The localisation MF

is the matroid on ground set F with flats {G ⊆ F : G ∈ L(M)}. It has a representation
AF = (αe)e∈F ∈ ((V/VF)

∗)F. The contraction MF is the matroid on ground set E \ F with
flats {G \ F : F ⊆ G ∈ L(M)}. It has a representation AF = (αe|VF)e∈E\F ∈ (V∗

F )
E\F.

Without loss of generality, assume that the αe span V∗. (If M is simple, this would
correspond to the hyperplane arrangement defined in Remark 1 being essential.) In this
case, the choice of A defines an embedding V → FE by v 7→ (αe(v))e∈E. Considering
FE as the subset of (P1)E = (F ∪ {∞})E with all coordinates finite, the closure of V in
(P1)E (in the Zariski topology) is the matroid Schubert variety YA of A. A key property of
matroid Schubert varieties is the existence of an affine paving.

Proposition 2 ([9, Lemmas 7.5 and 7.6]). The matroid Schubert variety YA has a stratification
YA =

⊔
F∈L(M) YF

A, where

YF
A = {(ye)e∈E ∈ YA : ye = ∞ if and only if e /∈ F} ∼= V/VF

∼= Frk F.

Further, YG
A =

⊔
F⊆G YF

A
∼= YAG for every G ∈ L(M).

Henceforth we fix F = R. In this case much of the combinatorics of A (and hence M)
can be encoded in the geometry of a convex polytope.

Definition 3. The zonotope associated to A is the Minkowski sum

ZA = ∑
e∈E

[−1, 1]αe =

{
∑
e∈E

ceαe : − 1 ⩽ ce ⩽ 1 for all e ∈ E

}
⊂ V∗.

Equivalently, it is the image of the cube [−1, 1]E under the projection (ce)e∈E 7→ ∑e∈E ceαe.

The face structure of ZA can be understood explicitly using the oriented matroid
structure of A in terms of covectors. Define a map V → {+,−, 0}E by sending v ∈ V
to C = (Ce)e∈E, where Ce = + if αe(v) > 0, − if αe(v) < 0, and 0 if αe(v) = 0. The
image of this map is the set of covectors of A. Each covector C gives a decomposition
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E = C+ ⊔ C− ⊔ C0, where C+ = {e ∈ E : Ce = +}, C− = {e ∈ E : Ce = −}, and
C0 = {e ∈ E : Ce = 0}. Observe that the flats of A are exactly the zero sets C0 of
covectors of A. Further, the set of covectors forms a lattice (the face lattice) with the
product order induced from the partial order 0 < +,− on each coordinate.

We can associate a face of ZA to each covector C as follows:

C 7→ ∑
e∈C+

αe − ∑
e∈C−

αe + ∑
e∈C0

[−1, 1]αe. (2.1)

It follows immediately that the face associated to a covector C is (isometric to) ZAF ,
where F is the zero set of C.

Proposition 4 ([4, Proposition 2.2.2]). The map (2.1) is an order-reversing bijection between
the face lattice and faces of ZA (under inclusion).

Example 5. In Figure 1 we visualise the rank 2 braid arrangement. Concretely, in the
above notation we have V∗ = R3/R(1, 1, 1), E = {1, 2, 12}, and α1 = (1,−1, 0), α2 =
(0,−1, 1), and α12 = (1, 0,−1) = α1 + α2. By fixing an isomorphism V ∼= V∗ using the
dot product, we draw both the hyperplanes in V (in black) and the zonotope in V∗ (in
blue) in the same plane. Finally, we label the regions of V by their covectors.

α1α2

α12

+++

+0+

+−+

+− 0

+−−
0 −−

−−−
−0−

−+−

−+ 0

−++

0 ++

ker α12

ker α1 ker α2

Figure 1: The rank 2 braid arrangement
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3 The combinatorial model

Observe from the explicit equations (2.1) that faces of ZA whose covectors correspond
to the same flat are translates of each other. Let Z̃A be the quotient of ZA obtained by
identifying two points if one is moved to the other by such a translation. Intuitively, Z̃A
is the result of identifying parallel faces in ZA.

The stratification of ZA by (relatively open) faces descends to a stratification of Z̃A
indexed by L(M). Denote by ZF

A the stratum corresponding to F ∈ L(M).

Theorem 6. The real matroid Schubert variety YA (with the analytic topology) is homeomorphic
to Z̃A.

Proof sketch. We claim that every homeomorphism f : R → (−1, 1) determines a home-
omorphism ϕ : YA → Z̃A. First observe that there is a map V → RE → (−1, 1)E → ZE

A
defined by v 7→ (αe(v)) 7→ ( f (αe(v))) 7→ ∑e∈E f (αe(v))αe. Unfortunately this compo-
sition does not obviously extend to the desired map, as the projection [−1, 1]E → ZA
does not descend to a well-defined map after identifying parallel faces. Nevertheless, we
claim that a suitable interpretation of the formula (ye)e∈E 7→ ∑e∈E f (ye)αe extends the
map V → ZE

A to the required continuous ϕ. In fact, if y = (ye)e∈E ∈ YF
A, there are several

possible values for ( f (ye))e∈E ∈ [−1, 1]E allowed by continuity, but they correspond to
different covectors with the same zero set F and hence ∑e∈E f (ye)αe is well-defined in
the quotient Z̃A.

Since YA is compact and Z̃A is Hausdorff, the continuous map ϕ is a homeomorphism
if it is a bijection. By construction it maps YF

A to ZF
A, so it is enough to verify bijectivity

on each stratum separately. Further, it is enough to check the open stratum YE
A

∼= V,
since each YF

A is the open stratum in YAF .
For injectivity, let v, w ∈ V and consider (de) = ( f (αe(v)) − f (αe(w))) ∈ (−1, 1)E.

Observe that f must be (strictly) increasing or decreasing; without loss of generality,
assume that f is increasing. The sign of de is then the same as the sign of αe(v − w).
So ∑e∈E deαe(v − w) is non-negative, and it is zero if and only if de = αe(v − w) = 0 for
every e ∈ E. But if v and w map to the same point in ZE

A, then ∑e∈E deαe = 0. It follows
that αe(v − w) = 0 for every e ∈ E, and thus v = w as the αe span V∗.

To show surjectivity, consider the quotients of YA and Z̃A identifying all boundary
strata to a point ∞. Both quotients are homeomorphic to spheres, with induced cell
decompositions V ⊔ {∞} and ZE

A ⊔ {∞} respectively. Since ϕ sends strata to strata, it
descends to a continuous cellular map ϕ between the quotients. If ϕ were not surjective,
then the image of ϕ would be contained in the sphere minus one point and hence be
homeomorphic to (a subset of) V. By the Borsuk–Ulam theorem ϕ would not be injective.
In particular, cellularity of ϕ implies that ϕ|V = ϕ|V would not be injective, contradicting
what was shown above.



Real matroid Schubert varieties 5

Remark 7. In the case of Coxeter arrangements, Theorem 6 was proved in [6, Appendix
A] using somewhat involved root system combinatorics.

Example 8. If dim V = dim V∗ = 2, then ZA is a 2n-gon (where n ⩾ 2 is the number
of rank 1 flats). Identifying parallel edges of ZA gives a connected compact orientable
surface without boundary. The resulting cell structure on the surface has one 0-cell if
n is even and two 0-cells if n is odd. By an Euler characteristic computation and the
classification of surfaces, it follows that YA is homeomorphic to Σg (if n = 2g is even)
or Σg with two (distinct) points identified (if n = 2g + 1 is odd). For example, the
matroid Schubert variety corresponding to the rank 2 braid arrangement of Example 5
is homeomorphic to the torus with two points identified.

4 Computations of invariants

The combinatorial model of Theorem 6 allows for easy computation of some topological
invariants of YA.

Homology

There is a cellular chain complex for Z̃A with cells given by the strata ZF
A. The bound-

ary map in this complex is necessarily zero, since in the computation for any cell ZF
A

opposite faces of ZF
A both occur and with opposite sign. Their contributions cancel, as

the opposite faces are identified in Z̃A. Hence the homology of YA is easy to compute.

Proposition 9. H•(YA, Z) ∼= H•(Z̃A, Z) ∼=
⊕

F∈L(M) ZxF, where deg xF = rk F.

Remark 10. It is interesting to note that the cellular boundary maps for the analogous
cell structures on complex matroid Schubert varieties are also zero, but for the different
reason that the cells are concentrated in even (real) dimension.

Fundamental group

The fundamental group of a cell complex depends only on the 2-skeleton. For Z̃A, the
cells of dimension k correspond to the flats of rank k. We take the 0-cell corresponding
to the unique rank 0 flat to be the basepoint. There is then a presentation of π1(YA) with
generators xF indexed by rank 1 flats and relations indexed by rank 2 flats.

To compute the relations, it is helpful to work with an acyclic reorientation of A (this
does not change the zonotope ZA). Let G be a rank 2 flat. The rank 1 flats contained in
G can be ordered as follows. If G contains n rank 1 flats, the zonotope ZAG is a 2n-gon.
One vertex of this 2n-gon has a covector without any + coordinates (this follows from
the choice of acyclic orientation). A length n sequence of edges from this vertex to its
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opposite vertex defines a total order F1 < . . . < Fn on the rank 1 flats contained in G.
There are two such sequences, giving opposite orders. The relation corresponding to G
then says that the two paths xF1 · · · xFn and xFn · · · xF1 determined by these sequences are
equal.

Theorem 11. The fundamental group π1(YA) has a presentation with generators {xF : F ∈
L(M), rk F = 1} and relations xF1 · · · xFn x−1

F1
· · · x−1

Fn
for every rank 2 flat G, where F1, . . . , Fn

are the rank 1 flats contained in G ordered as above.

Example 12. Continuing Example 5, the fundamental group of the matroid Schubert
variety in this case has a presentation ⟨x1, x2, x12 | x1x12x2x−1

1 x−1
12 x−1

2 ⟩.

Remark 13. When ZA is the (type A) permutohedron of dimension n, the homology and
fundamental group were computed in this way in [2, Proposition 8.3] and [2, Theorem
8.1], generalising the n = 2 computation in Example 12. In particular, the fundamental
group was shown to be isomorphic to the triangular group Trn+1, also known as the
pure flat braid group.

Remark 14. Every rank 2 oriented matroid is representable over R [4, Corollary 8.3.3], so
the above presentation of π1(YA) can be used to define a group for any oriented matroid.

Homotopy groups

In certain cases, the higher homotopy groups πn(YA) are also known.

Theorem 15 ([2, Theorem 8.1]). If ZA is the (type A) permutohedron, then Z̃A is a classifying
space and hence πn(YA) = πn(Z̃A) is trivial for all n > 1.

The proof uses the theory of non-positively curved polyhedral complexes. We expect
that the same result holds more generally, at least for nice enough choices of A.

5 Coxeter arrangements

We first fix some notation. Let Φ be a root system with simple roots Π and positive roots
Φ+. Each (positive) root defines a hyperplane in the dual space, and the corresponding
hyperplane arrangement is called a Coxeter arrangement. By abuse of notation, we also
use Φ+ for the matroid representation with coordinates given by the positive roots.

Further, let (mα,β)α,β∈Π be the Coxeter matrix associated to the root system Φ, and let
Σ = {σα : α ∈ Π} and S = {sα : α ∈ Π} be abstract sets indexed by Π. The Artin group A
has a presentation with generators Σ and relations Prod(σα, σβ, mα,β) = Prod(σβ, σα, mα,β)
for all α, β ∈ Π with α ̸= β and mα,β ̸= ∞. Here Prod(a, b, m) is the word aba . . . of length
m. Similarly, the Weyl group W has a presentation with generators S and relations s2

α = 1
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for all α ∈ Π and Prod(sα, sβ, mα,β) = Prod(sβ, sα, mα,β) for all α, β ∈ Π with α ̸= β and
mα,β ̸= ∞.

Bellingeri–Paris–Thiel [3] have recently defined the virtual Artin group VA as the free
product of W and A modulo some “mixed relations” coming from the action of W on
Φ. Their definition unifies the Coxeter-theoretic and knot-theoretic generalisations of
the classical braid group to Artin groups and virtual braid groups respectively. We are
interested in a quotient of their group that can be considered as a virtual analogue of the
corresponding Weyl group.

Definition 16 ([3]). The virtual Artin group VA is the free product of W and A modulo
relations Prod(sα, sβ, mα,β − 1)σα = σγProd(sα, sβ, mα,β − 1) for all α, β ∈ Π with α ̸= β

and mα,β ̸= ∞. In these relations, the positive root γ is defined as α if mα,β is even and β

if mα,β is odd.

Definition 17. The virtual Weyl group VW is the quotient of VA by the relations σ2
α = 1

for all α ∈ Π.

There is a surjective group homomorphism VW → W defined on generators by
σα, sα 7→ sα for all α ∈ Π, and we call its kernel the pure virtual Weyl group PVW. The map
πP : VA → W [3, Section 2] is the composition of this map with the quotient VA → VW,
and its kernel is the pure virtual Artin group PVA.

Proposition 18. The fundamental group π1(YΦ+) is isomorphic to PVW.

Proof sketch. There is a presentation of the pure virtual Artin group with generators
{ζβ : β ∈ Φ} and certain relations [3, Theorem 2.6]. As PVW is the image of PVA
under the quotient map VA → VW, we can obtain a presentation of PVW by imposing
(consequences of) the relations σ2

α = 1 to the presentation of PVA.
In fact, the generator ζβ is the element wsασαw−1 ∈ VA for some w ∈ W and α ∈ Π

such that w(α) = β [3, p. 197]. This definition is independent of the choices of w and
α [3, Lemma 2.2]. Then −β = wsα(α), so ζ−β = (wsα)sασα(sαw−1) = wσαsαw−1 and
ζβζ−β = wsασ2

αsαw−1. But this is the identity if and only if σ2
α = 1, so PVW has a

presentation with generators {ζβ : β ∈ Φ+} and the same relations as PVA.
A root subsystem Φ′ ⊂ Φ is parabolic if Φ′ ∩ Φ+ corresponds to a flat of the Coxeter

arrangement. The relations in the above presentation of PVA correspond to choices of
simple roots for rank 2 parabolic root subsystems of Φ. One can compute the relations
and show that, after accounting for the extra relations ζβζ−β = 1, the relations for pairs
of simple roots depend only on the parabolic root subsystem, and that they are the same
as the relations in Theorem 11 coming from the rank 2 flats. Hence the presentations of
PVW and π1(YΦ+) define the same group.

The Weyl group W acts on V, and hence on YΦ+ and π1(YΦ+). We can therefore con-
sider the W-equivariant fundamental group πW

1 (YΦ+) [6, Definition 11.1]. As the unique
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0-cell is fixed by the action of W, taking it as the basepoint gives a semidirect prod-
uct decomposition πW

1 (YΦ+) ∼= W ⋉ π1(YΦ+). The homomorphism W → Aut(π1(YΦ+))
defining the semidirect product is exactly the W-action indicated above. Explicitly, an
element w ∈ W acts on generators of π1(YΦ+) by ζβ 7→ ζw(β).

Theorem 19. The W-equivariant fundamental group πW
1 (YΦ+) is isomorphic to the virtual Weyl

group VW.

Proof sketch. The virtual Weyl group also has a semidirect product decomposition W ⋉
PVW descending from the semidirect product decomposition of the virtual Artin group
[3, Proposition 2.1]. As π1(YΦ+) ∼= PVW (Proposition 18) and the action of W on PVW
[3, p. 203] agrees with the action of W on π1(YΦ+), the semidirect products πW

1 (YΦ+)
and VW must be isomorphic.

Remark 20. In type A, the virtual Weyl group is known as the flat (virtual) braid group. It
was called the virtual symmetric group in [6], where it was realised as the equivariant
fundamental group πSn

1 (YΦ+) of the corresponding matroid Schubert variety [6, Lemma
11.6].
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