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Inhomogeneous particle process defined by
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Abstract. We construct a time, particle, and position inhomogeneous discrete time
particle process on the nonnegative integers that generalizes one of those studied in
a Dieker and Warren. The particles move according to an inhomogeneous geometric
distribution and stay in (weakly) decreasing order, where smaller particles block larger
particles. We show that the transition probabilities for our particle process is given by
a (refined) canonical Grothendieck function up to a simple overall factor.
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1 Introduction

The totally asymmetric simple exclusion process (TASEP) with sites on Z is a classical one
dimensional model that has many interesting features and applications. In this stochastic
process, there is at most one particle in each site and the particles move in one direction
— say, to the right — according to some specified dynamic. For the continuous time
process, particle p jumps one step with rate πp, subject to an exclusion interaction,
where a particle immediately to the right of p blocks it. For discrete time, then particles
decide to move by flipping (biased) coins, where success rate πp depends on particle.
However, we need a rule to resolve when two particles move simultaneously that could
interact. For the rule particles update right-to-left, this is Case B studied by Dieker and
Warren [4]. On the other hand, if the particle keeps moving one step each time it flips
the (biased) coin successfully until it fails, then it moves by the geometric distribution.
This is [4, Case C] with instead updating the particles from left-to-right.

In a seemingly different area, the (refined) Grothendieck polynomials Gλ//µ(xn; β)
originated from the (connective) K-theoretic Schubert calculus of the Grassmannian, and
so they are a natural generalization of the Schur polynomials. They have been well-
studied since their inception (for the unrefined case β = β) in the work of Lascoux and
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Schützenberger [13], which includes explicit combinatorial descriptions [2, 3, 7]. How-
ever, this is related to the aforementioned particle processes as follows. When we addi-
tionally make the success probability of Case C TASEP depend on the time t according
to πpxt, then the n-step transition probabilities can be easily seen to equal Gλ//µ(xn; β)
up to an explicit overall simple factor [8, Thm. 1.1]. Indeed, this can be seen in a number
of different ways: Directly comparing the Jacobi–Trudi formula [9] with the natural sym-
metric function replacements in the determinants in [4], using extensions of the Schur
operators to encode the dynamics [8, Sec. 4.2], or bijectively with set-valued tableaux [8,
Sec. 5.3]. A similar statement holds for Case B with the weak Grothendieck polynomials.

A natural question is what particle process corresponds to the canonical Grothen-
dieck polynomials [7, 16] (up to an analogous simple factor). However, it does not seem
possible to build a particle process from naively combining the Case BC processes, which
is similar to some of the combinatorial aspects of Gλ//µ(x; α, β). Instead, we develop our
stochastic model by using the Schur operators for Gλ//µ(x; α, β) developed in [8, Sec. 3] as
they were shown to encode the particle movements when α = 0. This leads to a position
inhomogeneous version of the Case BC process described above, which has been studied
when β = 0 in recent works [1, 11]. Our main result is that our new discrete time particle
process has a transition kernel given by the canonical Grothendieck polynomials. Using
this, we give a formula for the multi-point distribution for this process. All of our
formulas can be described as determinants of contour integrals using [9].

This is an extended abstract based on [8, Sec. 8], and is organized as follows. In
Section 2, we describe canonical Grothendieck polynomials. In Section 3, we give the
necessary free fermion representations. In Section 4, we describe our particle process.

2 Grothendieck polynomials

Let P denote the set of all partitions λ = (λ1, λ2, . . .), weakly decreasing sequences of
nonnegative integers with finite sum. We draw our Young diagrams using English con-
vention. Let ℓ(λ) denote the largest index ℓ such that λℓ > 0, called the length of λ. Let
λ′ denote the conjugate partition. A hook is a partition a1m with arm a − 1 and leg m.

Let x = (x1, x2, . . .) denote a countably infinite sequence of indeterminates and de-
note xn := (x1, . . . , xn, 0, 0, . . .). We make similar definitions for other such sequences. In
particular, we take parameters α = (α1, α2, . . .) and β = (β1, β2, . . .).

A hook-valued tableau of skew shape λ/µ is a filling of the Young diagram by hook
shaped tableau, fillings of a hook shape with entries weakly (resp. strictly) increasing
along the arm (resp. leg), satisfying the local conditions

a b

c

max(a) ≤ min(b)

<

min(c)
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Work [7] [16] [3] [14]

Specialization Gλ(x;−α, β) Gλ(x;−α,−β) Gλ(x; 0, β) Gλ(x; 0,−β)

Table 1: The relationship between our sign choices and some other papers.

(provided the requisite box exists). Note that this is a generalization of the semistandard
conditions, which reduce to the usual ones when a, b, c all consist of a single entry.

For µ ⊆ λ, the canonical Grothendieck function (we omit the word “refined” to simplify
our nomenclature from [7]) is the generating function

Gλ/µ(x; α, β) = ∑
T

∏
b∈T

(−αi)
a(b)(−β j)

b(b) wt(b),

where we sum over all hook-valued tableaux T of shape λ/µ, product over all entries b

in T with a(b) (resp. b(b)) the arm (resp. leg) of the shape of b and i (resp. j) the row
(resp. column) of the entry. We indicate various specializations and relation with some
of the literature in Table 1, which Gλ/µ(x; α, β) also specializes those in [2, 12]. While
technically we should work in a completion of the ring of symmetric functions, this does
not affect our results, so we suppress this here. The set {Gλ(x; α, β)}λ∈P is a basis for
(the completion of) symmetric functions (see, e.g., [6, 7]).

The skew shape description is not natural from the algebraic perspective. Hence,
refining [2, Eq. (6.4)] and [16, Prop. 8.8], we define [9, Sec. 4.1]

Gλ//µ(x; α, β) := ∑
ν⊆µ

∏
(i,j)∈µ/ν

−(αi + β j)Gλ/ν(x; α, β), (2.1)

where ν is formed by removing some corners of µ (boxes (i, µi) such that µi > µi+1).

Proposition 2.1 (Branching rules [9, Prop. 4.5]). We have

Gλ/µ(x, y; α, β) = ∑
ν⊆λ

Gλ//ν(y; α, β)Gν/µ(x; α, β),

Gλ//µ(x, y; α, β) = ∑
µ⊆ν⊆λ

Gλ//ν(y; α, β)Gν//µ(x; α, β).

The dual canonical Grothendieck functions {gλ(x; α, β)}λ∈P are defined as the dual ba-
sis to the canonical Grothendieck functions under the Hall inner product, defined by
{sλ(x)}λ∈P , where sλ(x) = Gλ(x; 0, 0) are the Schur functions, is an orthonormal basis.
A combinatorial definition of gλ(x; α, β) was given in [7], which is a refinement of the
rim border tableaux description of [16].

We have the skew Cauchy formula [9, Thm. 4.6] (a non-skew version is in [7] or
implied from [3, Rem. 3.9]). This is a refined version of [17, Thm. 1.1].
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Theorem 2.2 (Skew Cauchy formula). We have

∑
λ

Gλ//µ(x; α, β)gλ/ν(y; α, β) = ∏
i,j

1
1 − xiyj

∑
η

Gν//η(x; α, β)gµ/η(y; α, β).

3 Free fermions and Schur-type operators

We describe the free-fermion presentation of the (dual) canonical Grothendieck poly-
nomials from [9]. For more details, we refer the reader to [10]. The unital associative
Clifford algebra (over C) is generated by {ψn, ψ∗

n | n ∈ Z} with relations

ψmψn + ψnψm = ψ∗
mψ∗

n + ψ∗
nψ∗

m = 0, ψmψ∗
n + ψ∗

nψm = δm,n,

known as the canonical anti-commuting relations. The current operators are defined as
ak := ∑i∈Z ψiψ

∗
i+k, (care is needed for k = 0, but we will not use this) and satisfy the

Heisenberg algebra relations [am, ak] = mδm,−k, We will use the Hamiltonian operators

H(x/y) := ∑
k>0

pk(x/y)
k

ak, H∗(x/y) := ∑
k>0

pk(x/y)
k

a−k, where pk(x/y) =
∞

∑
i=1

xk
i − yk

i ,

and the corresponding half vertex operators eH(x/y) and eH∗(x/y). These satisfy the relations

eH(x/y)ψke−H(x/y) =
∞

∑
i=0

hi(x/y)ψk−i, e−H(x/y)ψ∗
k eH(x/y) =

∞

∑
i=0

hi(x/y)ψ∗
k+i,

where hi(x/y) is the homogeneous supersymmetric function.
Fermionic Fock space is the Clifford algebra representation F generated by the shifted

vacuum vectors with relations

|m⟩ =
{

ψm−1 · · ·ψ0|0⟩ if m ≥ 0,
ψ∗

m · · ·ψ∗
−1|0⟩ if m < 0,

⟨m| =
{
⟨0|ψ∗

0 · · ·ψ∗
m−1 if m ≥ 0,

⟨0|ψ−1 · · ·ψm if m < 0.

Note that eH(x/y)|m⟩ = |m⟩ and ⟨m|eH∗(x/y) = ⟨m| for all m. We will use the vectors

|λ⟩[α,β] :=
→
∏

1≤i≤ℓ

(
e−H(Aλi−1)ψλi−ieH(βi)eH(Aλi−1)

)
|−ℓ⟩,

|λ⟩[α,β] :=
→
∏

1≤i≤ℓ

(
eH∗(Aλi

)ψλi−ie−H∗(βi)e−H∗(Aλi
)
)

eH∗(Aλℓ
)|−ℓ⟩,

here Ak = −αk = (−α1, . . . ,−αk) and the product is ordered Ψ1 · · ·Ψℓ. We restrict
ourselves to the subspace F 0 and the bases [9, Thm. 3.10] {|λ⟩[α,β]}λ∈P and {|λ⟩[α,β]}λ∈P .
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There is also the dual representation F ∗, which has a canonical bilinear pairing called
the vacuum expectation value that satisfies

⟨k|m⟩ = δkm, (⟨w|X)|v⟩ = ⟨w|(X|v⟩)

for all k, m ∈ Z, operator X, ⟨w| ∈ F ∗, and |v⟩ ∈ F . Note that |k⟩∗ = ⟨k|. Define by the
anti-involution ψi ↔ ψ∗

i the vectors [α,β]⟨λ| := (|λ⟩[α,β])∗ and [α,β]⟨λ| := (|λ⟩[α,β])
∗. We

have the orthonormal bases [9, Thm. 3.10]

[α,β]⟨λ|µ⟩[α,β] =
[α,β]⟨λ|µ⟩[α,β] = δλµ. (3.1)

Moreover, there is the boson-fermion correspondence from F 0 to symmetric functions de-
fined by |v⟩ 7→ ⟨0|eH(x/y)|v⟩, which satisfies [9, Cor. 4.2, Eq. (4.1)]

Gλ//µ(x; α, β) = [α,β]⟨µ|eH(x)|λ⟩[α,β], gλ/µ(x; α, β) = [α,β]⟨µ|eH(x)|λ⟩[α,β]. (3.2)

We denote κi : k[P ] → k[P ] the i-th (row) Schur operator that adds a box to the i-th
row of a partition λ if λi < λi−1 (that is, we can add the box and obtain a partition) and
is 0 otherwise. We define the linear operator U(α,β)

i by

U(α,β)
i := κi + Θi, where Θi · λ :=

{
−αλi λ if λi < λi−1,
βi−1λ if λi = λi−1,

for any λ ∈ P . We consider λ0 = ∞ and α0 = 0 (although our proofs could have α0 be
an arbitrary parameter). When there is no ambiguity, we will simply write Ui := U(α,β)

i .

Lemma 3.1 ([8, Lemma 3.2]). The operators U = {Ui}∞
i=1 satisfy the weak Knuth relations.

Lemma 3.1 implies we can use U with noncommutative symmetric functions [5].

Theorem 3.2 ([8, Thm. 3.3]). We have [α,β]⟨λ|Sµ(a1, a2, . . .) = [α,β]⟨sµ(U/β) · λ|, where
Sλ(p1(x), p2(x), . . .) = sλ(x).

4 Particle Process

Now we describe a particle process whose transition kernel naturally uses the canonical
Grothendieck polynomials. We start by explicitly defining the stochastic process, and
then we will show how to interpret it using the noncommutative operators U. Let π =
(π1, π2, . . .) be a sequence of parameters such that 0 ≤ πixj < 1 for all i and j.

Let G(j, i) denote the position of the j-th particle at time i, which is determined by

G(j, i) = min
(
G(j, i − 1) + wji, G(j − 1, i − 1)

)
, (4.1)
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Figure 1: A sampling using 10000 samples of the inhomogeneous geometric distribu-
tion PG for xi = 1, πj = .5, and αk = 1 − ke−k/2 (blue) under the exact distribution
(red), which is under the geometric distribution with parameter πjxi (green).

by convention G(0, i − 1) := ∞, where the random variable wij (which depends on
G(j, i − 1)) is determined by the inhomogeneous geometric distribution defined by

PG(wji = m′ | G(j, i − 1) = m) :=
1 − πjxi

1 + αm+m′xi

m+m′−1

∏
k=m

(αk + πj)xi

1 + αkxi
. (4.2)

In other words, the j-th particle at time i attempts to jump wji steps, but can be blocked
by the (j − 1)-th particle, which updates its position after the j-th particle moves.

Let us digress slightly on why (4.2) is called an inhomogeneous geometric distri-
bution. We can realize it as the waiting time for a failure in sequence of Bernoulli
variables (i.e., weighted coin flips), but the k-th trial given a probability of success
(αk + πj)xi(1 + αkxi)

−1. Indeed, we note that the probability of a failure is

1 −
αkxi + πjxi

1 + αkxi
=

1 − πjxi

1 + αkxi
.

Hence, this gives us a sampling algorithm for the distribution PG . We illustrate the
effectiveness of this sampling in Figure 1. This perspective also allows us to easily see
that we have a probability measure on Z≥m for any fixed m. The case π = 0 can also be
seen as a projection of the Warren–Windridge dynamics [15]; see also [1, Sec. 2.2].

We will give some remarks on the meaning of the α parameters. From the behavior
of the operators U, it would be tempting to consider the α parameters as a viscosity, but
for α > 0, we have PG(wji = k) > PGe(wji = k), where PGe denotes the usual geometric
distribution with parameter πjxi. Thus, in this case, the α parameters act as a current
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being applied to the system, the strength (and direction) of which can vary at each
position. On the other hand, when α < 0, we have PG(wji = k) < PGe(wji = k), and so
indeed α then acts as (position-based) viscosity. We can also introduce locations where
certain particles must stop by having −αk = πj since this would have PG(wij = k′) = 0
for all k′ that would move the j-th particle past position k.

To see how to obtain this process using the noncommutative operators U, we initiate
by taking the skew Cauchy formula (Theorem 2.2) with ν = ∅ and with the specializa-
tions y = π1 and β j = πj+1, yielding

∑
λ

Gλ//µ(xn; α, β)gλ(π1; α, β) = ∏
i
(1 − π1xi)

−1gµ(π1; α, β). (4.3)

In particular, if we let λ̂i = λi − 1 for all 1 ≤ i ≤ ℓ(λ), then from the combinato-
rial description of [7, Thm. 7.2], we have gλ(π1; α, β) = π1ℓ(λ) ∏(i,j)∈λ̂

(αi + πj). Hence,
Equation (4.3) can be considered a Littlewood-type identity for canonical Grothendieck
polynomials. Dividing this by the factor on the right hand side and taking the term cor-
responding to λ, we obtain a probability distribution for n step random growth process
(since we must have µ ⊆ λ and currently the interpretation we have described is only on
partitions) given by

PC,n(λ|µ) =
n

∏
i=1

(1 − π1xi)π
1ℓ(λ)/1ℓ(µ) ∏

(i,j)∈λ̂/µ̂

(αi + πj)Gλ//µ(xn; α, β). (4.4)

Note that Equation (4.3) is equivalent to ∑λ PC,n(λ|µ) = 1 for any fixed µ and n.
Rephrasing Equation (4.4) and adding an α0 = 0 parameter in order to simplify the

product in gλ(π1; α, β), what we have computed are coefficients

Cλµ =
n

∏
i=1

(1 − π1xi)(⃗α + β)λ/µ, where (⃗α + β)λ/µ := ∏
(i,j)∈λ/µ

(αi−1 + πj)

that is defined to be 0 if λ ̸⊇ µ, such that

Cλµ · [α,β]⟨µ|eH(xn)|λ⟩[α,β] = PC,n(λ|µ) ⇐⇒ [α,β]⟨µ|eH(xn) = ∑
λ⊇µ

PC,n(λ|µ)
Cλµ

· [α,β]⟨λ|, (4.5)

where the equivalence of the two formulas is given by the orthonormality (3.1).
We now restrict ourselves to a single timestep at time i in order to encode the growth

process as a particle process by using the operators U. This incurs no loss of generality
as PC,n+n′(λ|µ) = ∑ν PC,n(λ|ν)PC,n′(ν|µ) by the branching rules (Proposition 2.1) and we
have a Markov process. Define the time evolution operator

TC =
∞

∑
k=0

hk(xiU) =
∞

∑
k=0

xk
i hk(U).
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Figure 2: Samples of our process with ℓ = 500 particles after n = 50000 time steps with
(left) π = 1, x = 0.01, and α = −0.5; (right) π = 0.5, x = .2, and αk = 0.5 sin(k/50)6.

By Theorem 3.2, by some algebraic and plethystic manipulations as in [8, Sec. 4.2]

[α,β]⟨µ|eH(xi) =
∞

∏
j=2

1
1 − πjxi

· [α,β]⟨TC · µ|.

Thus, if we consider the expansion ⟨TC · µ| = ∑λ Bλµ · [α,β]⟨λ|, and matching coefficients
in (4.5) (equivalently, pairing with |λ⟩[α,β]), we obtain

PC(λ|µ) =
Bλµ

(⃗α + β)λ/µ

∞

∏
j=1

(1 − πjxi)
−1.

Example 4.1. Consider µ = (1, 1) and set πj = 0 for all j > 3. Using

h1(u3) = u1 + u2 + u3, h2(u3) = u2
1 + u1u2 + u1u3 + u2

2 + u2u3 + u2
3,

h3(u3) = u3
1 + u2

1u2 + u2
1u3 + u1u2

2 + u1u2u3 + u1u2
3 + u3

2 + u2
2u3 + u2u2

3 + u3
3,

and recalling we consider α0 = 0, we compute

h1(U3) · µ =
(
−α1 +

)
+ π1 + ,

h2(U3) · µ =
(

α2
1 − (α1 + α2) +

)
+ π1

(
−α1 +

)
+

(
−α1 +

)
+ π2

1 + π1 + π2 ,

h3(U3) · µ =
(
−α3

1 + (α2
1 + α1α2 + α2

2) − (α1 + α2 + α3) +
)

+ π1

(
α2

1 − (α1 + α2) +
)
+

(
α2

1 − (α1 + α2) +
)

+ π2
1
(
−α1 +

)
+ π1

(
−α1 +

)
+ π2

(
−α1 +

)
+ π3

1 + π2
1 + π1π2 + π2

2 .
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Recall that Ak = −αk. Therefore, we have
[α,β]⟨TC · µ| = (1 + h1(β1 ⊔ A1)xi + h2(β1 ⊔ A1)x2

i + h3(β1 ⊔ A1)x3
i + · · · ) · [α,β]⟨1, 1|

+ xi(1 + h1(β1 ⊔ A2)xi + h2(β1 ⊔ A2)x2
i + · · · ) · [α,β]⟨2, 1|

+ xi(1 + h1(β2 ⊔ A1)xi + h2(β2 ⊔ A1)x2
i + · · · ) · [α,β]⟨1, 1, 1|

+ x2
i (1 + h1(β1 ⊔ A3)xi + · · · ) · [α,β]⟨3, 1|

+ x2
i (1 + h1(β2 ⊔ A2)xi · · · ) · [α,β]⟨2, 1, 1|+ · · ·

=
(1 + α1xi)

−1

1 − π2xi
· [α,β]⟨1, 1|+ (α1xi + π1xi)(1 + α1xi)

−1(1 + α2xi)
−1

(1 − π2xi)(⃗α + π)(2,1)/µ
· [α,β]⟨2, 1|

+
(α0xi + π3xi)(1 + α1xi)

−1

(1 − π2xi)(1 − π3xi)(⃗α + π)(1,1,1)/µ
· [α,β]⟨1, 1, 1|

+
(α1xi + π1xi)(α2xi + π1xi)(1 + α1xi)

−1(1 + α2xi)
−1(1 + α3xi)

−1

(1 − π2xi)(⃗α + π)(3,1)/µ
· [α,β]⟨3, 1|

+
(α1xi + π1xi)(α0xi + π3xi)(1 + α1xi)

−1(1 + α2xi)
−1

(1 − π2xi)(1 − π3xi)(⃗α + π)(2,1,1)/µ
[α,β]⟨2, 1, 1|+ · · · .

If we include α0 in the U operators, then all terms will be multiplied by (1 + α0xi)
−1

since the third particle can move from position 0. With this, some probabilities are

PC(1, 1|µ) = (1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)
,

PC(2, 1|µ) = (α1xi + π1xi)(1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)
,

PC(1, 1, 1|µ) = (α0xi + π3xi)(1 − π1xi)

(1 + α0xi)(1 + α1xi)
,

PC(3, 1|µ) = (α1xi + π1xi)(α2xi + π1xi)(1 − π1xi)(1 − π3xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)(1 + α3xi)
,

PC(2, 1, 1|µ) = (α1xi + π1xi)(α0xi + π3xi)(1 − π1xi)

(1 + α0xi)(1 + α1xi)(1 + α2xi)
.

Any individual (free) particle motion is (up to changing πj 7→ π1) equivalent to
the first particle’s motion. Thus, let us consider λ with ℓ(λ) = 1, and a straightforward
computation (say, at time i) using either the operators U or the combinatorial description
of Gλ//µ(xi; α, β) yields

PC
(
m′|m

)
=

1 − πjxi

1 + αm′+mxi

m+m′−1

∏
k=m

(αk + πj)xi

1 + αkxi
,

which is precisely the measure specified in (4.4). By (4.4), for any fixed m this is a
probability measure for all αk + πj ≥ 0 with the natural assumptions 0 ≤ πjxi < 1 and
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αkxi ≥ −1. This can also be extended to include (αk)k∈Z by shifting the parameters
αk 7→ αk±1. Hence, the same analysis as in [8, Sec. 4.2] yields the following.

Theorem 4.2. Suppose ℓ(λ) ≤ ℓ, πjxi ∈ (0, 1), αkxi > −1, and αk + πj ≥ 0 for all i, j, k.
Set β j = πj+1. Let PC,n(λ|µ) denote the n-step transition probability for particle system using
the distribution (4.2) for the jump probability of the particles with interactions as given by (4.1).
Then the n-step transition probability is given by

PC,n(λ|µ) =
n

∏
i=1

(1 − π1xi)(⃗α + π)λ/µGλ//µ(xn; α, β).

Remark 4.3. Since the α parameters used, and hence the probabilities, now depend on
the positions of the particles, we can only work with the bosonic model, where multiple
particles can occupy the same site. If we instead switch to a fermionic model by mapping
the j-th particle at position λj to λj − j, then we are required to introduce additional
parameters αk for k < 0, in which case Theorem 4.2 no longer holds, or to account for
the shifting of positions by replacing αk 7→ αk+j for the j-th particle distribution PG .

We could also prove Theorem 4.2 by using the combinatorics of hook-valued tableaux
as in [8, Sec. 5.3], where the positions of the particles is dictated by the smallest value
in each entry of the hook-valued tableaux. The key observation is that we have a factor
xi(1 − αkxi)

−1 for every box in the k-th column that would normally contain an i in the
set-valued tableaux (over all k), or where there is no arm. The leg (the column part
except for the corner) corresponds to the choice between 1 and −πixj in the numerator
of the normalization constant as in [8, Sec. 5.3]. The arm (the row part except for the
corner) comes from waiting at that particular position and contributes an −αxi, which
contributes a factor of (1 + αxi)

−1 as in the Case B combinatorial proof [8, Sec. 5.4].
From [9, Thm. 4.1], we obtain determinant formulas for PC,n(λ|µ), where we can

write the entries of the matrix as contour integrals [9, Thm. 4.19]. We can also redo [8,
Thm. 6.8] at this level of generality to obtain the multi-point distribution.

Theorem 4.4. The multi-point distribution is given by

P≥,n(ν|µ) := P(G(ℓ, n) ≥ νℓ, . . . , G(1, n) ≥ ν1 | G(ℓ, 0) = µℓ, . . . , G(1, 0) = µ1)

=
ℓ

∏
j=2

n

∏
i=1

(1 − πjxi)
−1 det

[
hνi−µj−i+j

(
x//(A(µj,νi]

⊔ πi/βj
)]ℓ

i,j=1.

We can give another simpler proof of Theorem 4.2 for the case when α = α. This will
follow from a straightforward generalization of the unrefined case [16, Prop. 3.4], noting
our sign convention means we need to substitute −α.

Proposition 4.5. Gλ(x; α, β) = Gλ(x/(1+ αx); 0, α+ β) by xi 7→ xi/(1+ αxi), βi 7→ α+ βi.
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Indeed, under this substitution, we have πjxi 7−→ (α+πj)xi
1+αxi

. Hence, the geometric
distribution PGe transforms to the distribution PG in (4.2) with α = α. Moreover, in our
formula in Case C of [8, Thm. 1.1], the total x degree and total π degree in each term of
πλ/µGλ//µ(x; β) are equal, and so we can perform this substitution.

Remark 4.6. Let us discuss the relationship between this model and the doubly geomet-
ric inhomogeneous corner growth model defined in [11]. In their corresponding TASEP
model, there is an additional set of position-dependent parameters ν that are only in-
volved after the initial movement of the particle (akin to static friction). Yet, if we set
ν = 0, then the model in [11] is the fermionic realization of our model (cf. Remark 4.3)
at β = 0 with their parameters (a, β) equaling our parameters (α, x). Hence, we end up
with another TASEP version that is equivalent to Case B. It would be interesting to see
if the model in [11] can be recovered from the free fermionic description.

We also remark that our model with π = 0 was studied in [1], but using very dif-
ferent techniques based on Toeplitz matrices and Markov semigroups. Therefore, from
the specialization of the canonical Grothendieck polynomials, it is essentially Case B as
before, with a more probabilistic link being made by [1, Thm. 2.43].

We can similarly define a Bernoulli process with the position-dependent probability

PB(wji = 1 | G(j, i − 1) = m) :=
(ρj + βm)xi

1 + ρjxi
. (4.6)

Analogously to Theorem 4.2 (including its proof), we have the following.

Theorem 4.7. Suppose λ1 ≤ ℓ, βkxi ∈ (0, 1), ρjxi > −1, and ρj + βk ≥ 0 for all i, j, k.
Set αj = ρj+1. The n-step transition probability for the particle system using Bernoulli jumps
according to the distribution (4.6) is given by

PB,n(λ|µ) =
(β⃗ + ρ)λ/µ

∏n
i=1(1 + ρ1xi)

Gλ′//µ′(xn; α, β).

If we set α = 0 in this position-dependent version of [8, Case B], then we end up with
a Bernoulli random variable version of [11] at ν = 0.
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