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Abstract. We prove a short, root-system uniform, combinatorial classification of Levi-
spherical Schubert varieties for any generalized flag variety G/B of finite Lie type. We
apply this to the study of multiplicity-free decompositions of Demazure modules and
their characters.
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1 Introduction

1.1 History and motivation

In his essay [17] on representation theory and invariant theory, R. Howe discusses the
significance of multiplicity-free actions as an organizing principle for the subject. Clas-
sical invariant theory focuses on actions of a reductive group G on symmetric algebras,
which is to say, coordinate rings of vector spaces. Now one also considers G-actions on
varieties X and their coordinate rings C[X]. Such an action is multiplicity-free if C[X]
decomposes, as a G-module, into irreducible G-modules each with multiplicity one. An
important example is when X is the base affine space of a complex, semisimple algebraic
group G [3]; in this case the coordinate ring is a multiplicity-free direct sum of the ir-
reducible representations of G. Lustzig’s theory of dual canonical bases [24] provides a
basis for it. In the early 2000s, understanding this basis was a motivation for S. Fomin
and A. Zelevinsky’s theory of Cluster algebras [11].

The notion of multiplicity-free actions is closely connected to that of spherical varieties.
Let G be a connected, complex, reductive algebraic group; we say that a variety X is a G-
variety if X is equipped with an action of G that is a morphism of varieties. A spherical
variety is a normal G-variety where a Borel subgroup of G has an open, and therefore
dense, orbit. A normal, affine G-variety X is spherical if and only if C[X] decomposes
into irreducible G-modules each with multiplicity one [31]. If X is instead a normal,
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projective G-variety then one can still recover one direction of this implication. That is, if
the induced G-action on the homogeneous coordinate ring of X is multiplicity-free, then
X is G-spherical [15, Proposition 4.0.1].

Spherical varieties possess numerous nice properties. For instance, projective spher-
ical varieties are Mori Dream Spaces. Moreover, Luna-Vust theory describes all the bi-
rational models of a spherical variety in terms of colored fans; these fans generalize the
notion of fans used to classify toric varieties (which are themselves spherical varieties).
N. Perrin’s excellent survey covers additional background on spherical varieties [27].

It is an open problem to classify all spherical actions on products of flag varieties.
This is solved in the case of Levi subgroups; we point to the work of P. Littelmann
[23], P. Magyar–J. Weyman–A. Zelevinsky [25, 26], J. Stembridge [29, 30], R. Avdeev–
A. Petukhov [1, 2]. Connecting back to the representation-theoretic perspective of [17],
in [29, 30], J. Stembridge relates this classification problem to the multiplicity-freeness
of restrictions of Weyl modules [12, Lecture 6]. Indeed, the homogeneous coordinate ring
of a single flag variety is a multiplicity-free sum of spaces of global sections on the
variety with respect to line bundles associated to each dominant integral weight. By the
Borel-Weil-Bott theorem, these spaces are isomorphic to the irreducible representations
of G. This is the central object of interest in Standard Monomial Theory [22] and is closely
related to the coordinate ring of base affine space mentioned above. As remarked above a
product of flag varieties is G-spherical if its homogeneous coordinate ring is multiplicity-
free as an G-module.

This paper solves a related problem. We classify all Levi-spherical Schubert varieties
in a single flag variety; that is, Schubert varieties that are spherical for the action of a
Levi subgroup. Here, the relevant ring is the homogeneous coordinate ring of a Schubert
variety and the attendant representation theory is that of Demazure modules [10], which
are Borel subgroup representations. Critically for this paper, they are also Levi subgroup
representations. Multiplicity-freeness in this setting refers to the decomposition of these
modules into irreducible Levi subgroup representations. This study was initiated in [16]
and the authors solved the problem for the GLn case in [14]. In [13] we conjectured an
answer for all finite rank Lie types; this paper proves that conjecture.1

1.2 Background

Throughout, let G be a complex, connected, reductive algebraic group and let B ≤ G
be a choice of Borel subgroup along with a maximal torus T contained in B. The Weyl
group is W := NG(T)/T, where NG(T) is the normalizer of T in G. The orbits of the
homogeneous space G/B under the action of B by left translations are the Schubert cells

1During the completion of this article, we learned that M. Can-P. Saha [4] independently proved the
conjecture.
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X◦
w, w ∈ W. Their Zariski closures

Xw := X◦
w

are the Schubert varieties. It is relevant below that these varieties are normal [9, 28].
A parabolic subgroup of G is a closed subgroup B ⊂ P ⊊ G such that G/P is a projective

variety. Each such P admits a Levi decomposition

P = L ⋉ Ru(P)

where L is a reductive subgroup called a Levi subgroup of P and Ru(P) is the unipotent
radical. One parabolic subgroup is Pw := stabG(Xw). Any of the parabolic subgroups
B ⊆ Q ⊆ Pw act on Xw.

Let LQ be a Levi subgroup of Q. A variety X is H-spherical for the action of a complex
reductive algebraic group H if it is normal and contains an open, and therefore dense,
orbit of a Borel subgroup of H. Our reference for spherical varieties is [27]; toric varieties
are examples of spherical varieties.

Definition 1.1 ([16, Definition 1.8]). Let B ⊆ Q ⊆ Pw be a parabolic subgroup of G.
Xw ⊆ G/B is LQ-spherical if Xw has a dense, open orbit of a Borel subgroup of LQ under
left-translations.

1.3 The main result

We give a root-system uniform combinatorial criterion to decide if Xw is LQ-spherical.
Let Φ := Φ(g, T) be the root system of weights for the adjoint action of T on the Lie
algebra g of G. It has a decomposition Φ = Φ+ ∪ Φ− into positive and negative roots.
Let ∆ ⊂ Φ+ be the base of simple roots. The parabolic subgroups Q = PI ⊃ B are in
bijection with subsets I of ∆; let LI := LQ. The set of left descents of w is

DL(w) = {β ∈ ∆ : ℓ(sβw) < ℓ(w)},

where ℓ(w) = dim Xw is the Coxeter length of w. Under the bijection, Pw = PDL(w), and
B ⊂ Q ⊆ Pw = PDL(w) satisfy Q = PI for some I ⊆ DL(w).

For I ⊂ ∆, a parabolic subgroup WI ⊆ W is the subgroup generated by SI := {sβ : β ∈
I}. A standard Coxeter element c ∈ WI is any product of the elements of SI listed in some
order. Let w0(I) be the longest element of WI . The following definition was given in
type A in [14, Definition 1.1] and in general type in [13, Section 4]:

Definition 1.2. Let w ∈ W and I ⊆ DL(w) be fixed. Then w is I-spherical if w0(I)w is a
standard Coxeter element for WJ where J ⊆ ∆.

We first note that if I ⊆ DL(w), then the left inversion set I(w), defined in Section 3,
contains all the positive roots in the root subsystem generated by I, and thus w = w0(I)d
is a length-additive expression for some d ∈ W, by Proposition 3.1.3 in [5].
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Theorem 1.3. Fix w ∈ W and I ⊆ DL(w). Xw is LI-spherical if and only if w is I-spherical.

Theorem 1.3 resolves the main conjecture of the authors’ earlier work [13, Conjec-
ture 4.1] and completes the main goal set forth in [16]. In [14], Theorem 1.3 was estab-
lished in the case G = GLn using essentially algebraic combinatorial methods concerning
Demazure characters (or in their type A embodiment, the key polynomials). In contrast, the
geometric arguments of this paper are quite different, significantly shorter, but require
more background of the reader in algebraic groups. Theorem 1.3 is a generalization of
work of P. Karuppuchamy [21] that characterizes Schubert varieties that are toric, which
in our setup means spherical for the action of L∅ = T. Using work of R. S. Avdeev–A.
V. Petukhov [1], Theorem 1.3 may also be seen as a generalization of some results of
P. Magyar–J. Weyman–A. Zelevinsky [25] and J. Stembridge [29, 30] on spherical actions
on G/B; see [16, Theorem 2.4]. Previously, there was not even a finite algorithm to
decide LI-sphericality of Xw in general.

1.4 Organization

Examples of the main result are given in Section 2. Sections 3 and 4 prove Theorem 1.3.
Section 5 applies our main result to the study of Demazure modules [10].

2 Examples of Theorem 1.3

We begin with a few examples illustrating Theorem 1.3.

Example 2.1 (E8 cf. [16, Example 1.3]). The E8 Dynkin diagram is
1

2

3 4 5 6 7 8
. One

associates the simple roots βi (1 ≤ i ≤ 8) with this labeling and writes si := sβi . Suppose

w = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6 ∈ W.

Then DL(w) = {β2, β3, β4, β5, β7, β8}. Let I = DL(w). Here

w0(I) = s3s2s4s3s2s4s5s4s3s2s4s5 · s7s8s7 and w0(I)w = s1s6s7s8.

Since w = w0(I)c where c = s1s6s7s8 is a standard Coxeter element, Theorem 1.3 asserts
that Xw is LI-spherical in the complete flag variety for E8.

Example 2.2 (F4 cf. [16, Example 1.5]). The F4 diagram is
1 2 3 4

. First suppose

w = s4s3s4s2s3s4s2s3s2s1s2s3s4 (I = DL(w) = {β2, β3, β4}).
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Then w0(I) = s2s3s2s3s4s3s2s3s4 and w0(I)w = s1s2s3s4 is standard Coxeter. Hence Xw is
LI-spherical. On the other hand if

w′ = s2s1s4s3s2s1s3s2s4s3s2s1 (I = DL(w′) = {β2, β4}),

then w0(I) = s2s4 and w0(I)w = s1s3s2s1s3s2s4s3s2s1 is not standard Coxeter and Xw is
not LI-spherical.

Example 2.3 (D4). The D4 diagram is
1 2

3

4
. Let

w = s3s2s3s4s2s1s2 (I = DL(w) = {β2, β3}).

Thus w0(I) = s2s3s2 and w0(I)w = s4s2s1s2 is not standard Coxeter. Hence Xw is not
LI-spherical. The interested reader can check w is I-spherical in the (different) sense of
[16, Definition 1.2]. Therefore, this w provides a counterexample to [16, Conjecture 1.9]
in type D4. This counterexample was also (implicitly) verified in [13] using a different
method, namely Demazure character computations, the topic of Section 5.

3 An equivariant isomorphism

The primary goal of this section is to construct a torus equivariant isomorphism from
a specified affine subspace of the open cell of a Schubert variety to the open cell of a
distinguished Schubert subvariety. In what follows, we assume standard facts from the
theory of algebraic groups. References we draw upon are [18, 6, 22].

Let w ∈ W. Let nw be a coset representative of w in NG(T). By definition of NG(T)
being the normalizer of T in G, t 7→ nwtn−1

w defines an automorphism γw : T → T.

Lemma 3.1. The automorphism γw does not depend on our choice of coset representative nw.

In light of Lemma 3.1, henceforth for w ∈ W we will also let w denote a coset repre-
sentative of w in NG(T). Let X be a T-variety with action denoted by ·. For each w ∈ W
we define an action ·w on X by t ·w x = γw(t) · x for all x ∈ X and t ∈ T.

Lemma 3.2. For all w ∈ W, the T-variety X has an open, dense T-orbit for the action · if and
only if it has an open, dense T-orbit for the action ·w. Indeed, the set of T-orbits in X for these
two actions is identical.

For the remainder, we fix · to be the restriction to T of the action of G on G/B by left
multiplication. The left inversion set of w ∈ W is

I(w) := Φ+ ∩ w(Φ−) = {α ∈ Φ+|w−1(α) ∈ Φ−}.
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Recall two standard facts regarding left inversion sets [19, Chapter 1]. For w ∈ W,

|I(w)| = ℓ(w) = dimC Xw, (3.1)

and
I(w0(I)) = Φ+(I), (3.2)

where Φ(I) = Φ(lI , T) is the root system for the adjoint action of T on lI = Lie(LI).
We say that an algebraic group H is directly spanned by its closed subgroups H1, . . . , Hn,

in the given order, if the product morphism

H1 × · · · × Hn → H

is bijective. For w ∈ W, define Uw := U ∩ wU−w−1, where U consists of the unipotent
elements of B and similarly, U− is the unipotent part of B− := w0Bw0. This is a subgroup
of U that is closed and normalized by T. Hence, by [6, §14.4], Uw is directly spanned,
in any order, by the root subgroups Uα, α ∈ Φ+, contained in Uw. Since by [20, Part II,
1.4(5)],

wUαw−1 = Uw(α), (3.3)

these are the Uα such that α ∈ Φ+ ∩ w(Φ−) = I(w). Thus

Uw = ∏
α∈I(w)

Uα, (3.4)

where the products Uα may be taken in any order.

Lemma 3.3. For a coset wB ∈ G/B, we have

X◦
w := BwB = UwwB = ∏

α∈I(w)

Uα wB. (3.5)

Moreover, X◦
w is isomorphic to the affine space Aℓ(w) (as varieties).

We say that w = uv ∈ W is length additive if ℓ(uv) = ℓ(u) + ℓ(v). Under this hypoth-
esis, by [7, Ch. VI, §1, Cor. 2 of Prop. 17] one has

I(uv) = I(u) ⊔ u(I(v)).

Therefore, in particular, if we assume w0(I)d ∈ W is length additive, then

I(w0(I)d) = I(w0(I)) ⊔ w0(I)(I(d)). (3.6)

Define
Vd := w0(I)Udw0(I)−1 = w0(I)Udw0(I).
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Lemma 3.4. Vd is a closed subgroup of Uw0(I)d that is normalized by T.

Lemma 3.5. Uw0(I)d is directly spanned by Uw0(I) and Vd:

Uw0(I)d = Uw0(I)Vd = VdUw0(I). (3.7)

Define
Õ := Vdw0(I)dB ⊆ G/B.

Lemma 3.6. Õ is T-stable for the action ·.

The following is the main point of this section:

Proposition 3.7. If w0(I)d ∈ W is length additive then

X◦
w0(I)d = Uw0(I)d w0(I)dB.

Hence Õ ⊂ X◦
w0(I)d. Moreover, Õ with the T-action · is T-equivariantly isomorphic to X◦

d with
the T-action ·w0(I).

4 Proof of the main result

We need a lemma examining the LI-action on Õ. This lemma is then used in conjunction
with Proposition 3.7 to prove our main result.

Let BLI = LI ∩ B and let ULI be the unipotent radical of BLI . Then BLI is a Borel
subgroup in LI [6, §14.17] with ULI = BLI ∩ U and BLI = T ⋉ ULI . Since LI is the
subgroup of G generated by T and {Uα | α ∈ Φ(I)} [22, §3.2.2], it is straightforward to
show that

ULI = ∏
α∈Φ+(I)

Uα,

where the product is taken in any order [6, §14.4].

Lemma 4.1. Let w = w0(I)d ∈ W be length additive. Let x ∈ X◦
w0(I)d \ Õ and y, z ∈ Õ.

(i) uy /∈ Õ for all u ∈ ULI with u ̸= e.

(ii) tx /∈ Õ for all t ∈ T.

(iii) There exists b ∈ BLI such that by = z if and only if there exists t ∈ T such that ty = z.

We now have the necessary ingredients to complete the proof of Theorem 1.3.
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5 Application to Demazure modules

As an application of these results we give a sufficient condition for a Demazure module
to be a multiplicity-free LI-module; equivalently, a sufficient condition for a Demazure
character to be multiplicity-free with respect to the basis of irreducible LI-characters.

Let X(T) denote the lattice of weights of T; our fixed Borel subgroup B determines a
subset of dominant integral weights X(T)+ ⊂ X(T). The finite-dimensional irreducible
G-representations are indexed by λ ∈ X(T)+. Denoting the associated representation by
Vλ, there is a class of B-submodules of Vλ, first introduced by Demazure [10], that are
indexed by w ∈ W. If vλ is a nonzero highest weight vector, then the Demazure module
Vw

λ is the minimal B-submodule of Vλ containing wvλ.
There is a geometric construction of these Demazure modules. For λ ∈ X(T)+, let Lλ

be the associated line bundle on G/B. For w ∈ W, we write Lλ|Xw for the restriction of
Lλ to the Schubert subvariety Xw ⊆ G/B. Then the Demazure module Vw

λ is isomorphic
to the dual of the space of global sections of Lλ|Xw , that is

Vw
λ
∼= H0(Xw,Lλ|Xw)

∗.

This geometric perspective highlights the fact that Vw
λ is not just a B-module, but is in

fact also a LI-module via the action induced on H0(Xw,Lλ|Xw) by the left multiplication
action of LI on Xw.

As LI is a reductive group over characteristic zero, any LI-module decomposes into
a direct sum of irreducible LI-modules. Let XLI (T)

+ be the set of dominant integral
weights with respect to the choice of maximal torus and Borel subgroup T ⊆ BI ⊆ LI .
For µ ∈ XLI (T)

+, let VLI ,µ be the associated irreducible LI-module. If M is a LI-module
and

M =
⊕

µ∈XLI (T)
+

V
⊕mLI ,µ
LI ,µ

is the decomposition into irreducible LI-modules, then we say that M is a multiplicity-free
LI-module if mLI ,µ ∈ {0, 1}. Similarly, if char(M) is the formal T-character of M and

char(M) = ∑
µ∈XLI (T)

+

mLI ,µchar(VLI ,µ),

then we say that char(M) is I-multiplicity-free if mLI ,µ ∈ {0, 1}.
The following argument was given for type A in [16, Theorem 4.13(II)]. We prove the

general type argument (which is essentially the same) for sake of completeness:

Theorem 5.1. Let w ∈ W with I ⊆ DL(w). Then Xw is LI-spherical if and only if for all
λ ∈ X(T)+, the Demazure module Vw

λ is multiplicity-free LI-module.

Corollary 5.2. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T)+, the Demazure
module Vw

λ is a multiplicity-free LI-module.
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Corollary 5.3. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T)+, the Demazure
character char(Vw

λ ) is I-multiplicity-free.

These two corollaries appear non-trivial from a combinatorial perspective, even for
a specific choice of dominant weight λ with fixed w ∈ W. The Demazure character can
be recursively computed using Demazure operators. There is also a combinatorial rule
for the character in terms of crystal bases (in instantiations such as the Littelmann path
model or the alcove walk model); see, e.g., the textbook [8]. However, an argument based
on these methods eludes in general type, although we have an argument in type A [14].
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