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Abstract. The interface between the combinatorics of a partially ordered set (poset)
and the representation theory of its incidence algebra has been studied for a long
time. Antichains naturally arise as encoding certain representations of combinatorial
nature. In this paper, we study antichains with extra properties motivated by the
search for good bases for the Coxeter matrix of a poset and the hope of categorifying
its properties. We then turn to a concrete example where our methods apply nicely
and solve a conjecture on the poset of cominuscule roots.

Résumé. Les interactions entre la combinatoire d’un ensemble ordonné et la théorie
des représentations de son algèbre d’incidence forment un sujet bien étudié. Les an-
tichaines apparaissent comme décrivant certaines représentations de nature combina-
toire. Dans cet article nous étudions des antichaines satisfaisant des hypothèses de
rigidité, motivé par la recherche de bonnes bases pour la matrice de Coxeter d’un
poset et l’espoir de catégorifier ses propriétés. On traite ensuite un exemple concret où
nos méthodes s’appliquent élégamment et nous permettent de résoudre une conjecture
sur des ensembles ordonnés de racines cominuscules.
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1 Introduction

Fractionally Calabi-Yau posets are fascinating objects in part due to a hypothetical rela-
tion to product formulas due to Chapoton [3]. In combinatorics, many families of sets
(En)n∈N can be counted by product formulas |En| = Πn

i=1
D−di

di
where the sum of the

numerator and denominator is constant and equal to D. Such families include the Cata-
lan numbers, the number of alternating sign matrices, the West family and the Tamari
intervals family. Chapoton’s conjectural explanation is that there should exist a partial
order on En whose derived category is equivalent to a triangulated Calabi-Yau category
constructed from the data of D and the di coefficients. That category should be geometric
in nature, a type of Fukaya category. This explanation provides with predictions about
the Calabi-Yau dimension of the incidence algebra of the poset as well as its Coxeter
polynomial that can be tested, e.g. with a computer.
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Observe that the binomial (m+n
m ) can be written as

m + n
1

m + n− 1
2

· · · · · m + 1
n

(1.1)

where D = m + n + 1. This is probably the most natural example of product formula as
discussed above. The poset of order ideals of a product of total orders of length m and
n has cardinality (n+m

m ). We write it Jm,n. Using our results on boolean antichains we are
able to confirm Chapoton’s prediction about the Calabi-Yau dimension of these posets.

Theorem 1. The bounded derived category of Jm,n is mn
m+n+1 -Calabi-Yau.

Moreover we provide a link to a type of Fukaya category.

Theorem 2. The bounded derived category of the algebra of the poset Jm,n is equivalent
to the partially wrapped Fukaya category of the m− 1th symmetric power of the disc
with n + 1 marked points on the boundary,W(Symm−1

D, λ
(m−1)
n+1 ).

We prove this equivalence through an intermediate category, the derived category
of the higher Auslander algebra An−1

m+1 [5] which appears at the intersection of several
hot topics in contemporary representation theory [6], [9]. This algebra is known to
be equivalent to the Fukaya category which appears in Theorem 2 [4]. As a corollary
to Theorem 1 we give a positive answer to the Chapoton-Yıldırım conjecture [11] on
cominuscule root posets of type A and B.

Corollary 1. The bounded derived category of cominuscule posets of type A, B are fractionally
Calabi-Yau.

2 Representations of partially ordered sets

Let k be a field and X a finite poset. Define its incidence algebra A = Ak(X) over k to
be the k vector space with basis pairs (x, y) such that x ≤ y with multiplication defined
by

(x, y)(z, t) =

{
(x, t) if y = z,
0 otherwise.

For x ∈ X we write ex = (x, x) the usual primitive idempotent. Then we have 1A =

∑x∈X ex. Throughout this work we consider left modules over A. For every element
x ∈ X the associated simple module is Sx ∼= k with action (y, t) · 1k = 0 unless y = t = x
in which case ex · 1k = 1k. Its projective cover Px = A · ex has basis {(y, x)|y ≤ x}. Its
injective hull is the injective indecomposable Ix = (ex · A)∗ and has basis {(x, y)∗|x ≤ y}.
Recall that morphisms between the projective indecomposables are characterised by

HomA(Px, Py) = HomA(Aex,Aey) ∼=
{

exAey ∼= k if x ≤ y,
0 otherwise.



Antichains in the representation theory of finite Lattices 3

We denote the canonical inclusion as ι
y
x : Px ↪→ Py whenever x ≤ y: this inclusion is

nothing more than right multiplication by (x, y). More generally for any left A-module
M, we have HomA(Px, M) ∼= ex M. This isomorphism makes the following diagram
commute

f HomA(Px, M) HomA(Py, M) g

f (ex) ex M eyM g(ey)

∈
◦ιyx

∋

∈
(x,y)·

∋

(2.1)

The total hom complex Hom•A(C, M) where C is a chain complex C = ((Cn)n, (∂n)) of A
modules and M is an A-module, is the complex

· · · → HomA(Cn, M)
∂∗n+1−−→ HomA(Cn+1, M)→ . . .

Assuming that Cn =
⊕

x∈Sn Px with Sn ⊆ X and taking its cohomology gives shifted
morphisms in the derived category Db(A) [12, Lemma 3.7.10]:

Hi(Hom•A(C, M)) ∼= HomDb(A)(C, M[i]) (2.2)

Moreover, using equation (2.1) we have an isomorphism of cochain complexes

. . . HomA(
⊕
x∈Sn

Px, M) HomA(
⊕

x∈Sn+1

Px, M) . . .

. . .
⊕
x∈Sn

ex M
⊕

x∈Sn+1

ex M . . .

∂∗n+1

(2.3)

The boundary maps of the bottom complex are linear combinations of left multiplication
by elements (x, y) of the algebra with coefficients inherited from the top complex.

3 Doing homological algebra with antichains

3.1 Antichains

Let (L,∧,∨) be a finite lattice. We write 1̂ its maximum and 0̂ its minimum. Let C be an
antichain in L i.e. a subset C of L that consists of pairwise incomparable elements of L. We
say an antichain C is below an element α of L if for all c ∈ C, we have c ≤ α, and when
needed we record this information in the notation Cα. Following [7, Proposition 2.1]
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we associate to an antichain C = {c1, . . . , cr} the submodule NC = ∑r
i=1 A · (ci, 1̂) of the

projective P1̂ generated by the antichain. It follows directly from the same proposition
that there is a one to one correspondence between antichains and submodules of P1̂. The
antichain module associated to C is defined by MC := P1̂/NC. We will talk of antichain
modules below α ∈ L by restricting to the sublattice [0̂, α] of L. Then α is the greatest
element of this lattice and there is a bijection between submodules of Pα and antichains
below α. The corresponding modules will be denoted Nα

C and Mα
C. As our main example

consider a ≤ b in L. The maxima of the set of elements of L which are strictly less than
b but not above a for an antichain C and the antichain module below b associated to C
has support the interval [a, b]. The corresponding antichain module is usually called an
interval module. In the rest of the paper we identify intervals with their interval modules.

Lemma 1. Intervals are antichain modules.

With the conventions of the previous paragraph, morphisms between interval mod-
ules follow a simple rule

HomA([a, b], [c, d]) =

{
k if a ≤ c ≤ b ≤ d,
0 otherwise.

(3.1)

By [7, Theorem 2.2], for every antichain C of cardinal r of a lattice L the associated
antichain module MC has a projective resolution PC of the form

0→ Pr → · · · → P0 → MC where P0 = P1̂ and Pl =
⊕
S⊆C
|S|=l

P∧S for 1 ≤ l ≤ r.

Similarly, we obtain a projective resolution Pα
C for the antichain module Mα

C below α.
The boundary maps are defined by fixing an arbitrary total ordering of elements in C

and, in each degree, setting the following maps between the indecomposable summands
of the source and target in each degree:

P∧S → P∧T(
x,∧S

)
7→

{
(−1)|i|S

(
x,∧T

)
if T ⊔ {i} = S,

0 otherwise

(3.2)

for each S = {i1, . . . , ik} and
(
∧ T,∧S

)
∈ P∧S where |i|S = |{j ∈ S|j ≤ i}|.

3.2 Boolean antichains

Note that in degree i of the projective resolution Pα
C of Mα

C there are (r
i) indecomposable

components in the direct sum. If one forgets the modules, the complex has the shape of
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c1 c2 c3

Figure 1:
Boolean an-
tichain

c1 c2 c3

(c2∧c1)
∨(c3∧c1)

Figure 2:
Strong not in-
tersective

c1 c2 c3

c1 ∧ c2 = c1 ∧ c3

Figure 3: In-
tersective not
strong

c1 c2 c3

c1 ∧ c2 = c1 ∧ c3

c2 ∨ c3

Figure 4: An
antichain that
is neither

the power set of C, however the indices of the modules in each degree are not necessarily
in bijection with the lattice (P(C),⊆,∪,∩) (see Figures (1) to (4)).

To make this statement more precise, let us introduce four definitions regarding an
antichain C.

Inclusive antichain. For all subsets S and S′ of C, if ∧S ≤ ∧S′ then S′ ⊆ S.

Intersective antichain. For all subsets S and S′ of C, we have (∧S) ∨ (∧S′) = ∧(S ∩ S′).

Strong antichain. For all S, S′ subsets of C of the same cardinal, ∧S and ∧S′ are incom-
parable i.e. if ∧S ≤ ∧S′ then S = S′.

Boolean antichain C is both inclusive and intersective.

If C is below α, we say that Cα satisfies one of these properties if it satisfies it in the
lattice [0, α]. Note that intersectivity depends on the choice of a top element α whereas
inclusivity and strength do not. Note also the following lemma.

Lemma 2. An antichain is inclusive if and only if it is strong.

Proof. The inclusion condition gives the strong antichain condition when the subsets S
and S′ have the same cardinal. To see the converse, assume that the antichain C is a
strong antichain and let S and S′ be two subsets of C such that ∧S′ ≤ ∧S. Suppose
at first that |S| + n = |S′| with n > 0. Then there exists s1, . . . , sn ∈ S′ \ S. Set S′′ =
S ⊔ {s1, . . . , sn}. Because the inequalities ∧S′ ≤ ∧S and ∧S′ ≤ ∧{s1, . . . , sn} hold, we
have

∧S′ ≤ (∧S) ∧ (∧{s1, . . . , sn}) = ∧S′′.

Because |S′| = |S′′|, the strong incomparability condition yields S′ = S′′ hence S ⊆ S′.
Next if |S| = |S′| + n, again with n > 0, then take s1, . . . , sn in S \ S′ and set S′′ =
S ∪ {s1, . . . , sn}. Then we have

∧S′′ = (∧S′) ∧ (∧{s1, . . . , sn}) ≤ ∧S.



6 Tal Gottesman

By the strong incomparability condition S = S′′. Then S′ ⊆ S so ∧S′ ≥ ∧S and thus
∧S′ = ∧S. Using the first part of the proof we get S = S′. This contradicts the assump-
tion on the integer n.

Remark 1. If an antichain is strong, then it follows that for each n, the set {∧S|S ⊆
C with |S| = n} is an antichain.

Denote ⟨C⟩α∨,∧ the sublattice of [0, α] generated by the elements of C and α.

Lemma 3. An antichain is boolean if and only if the map

(P(C),∩,∪) ϕ−→ (⟨C⟩α∨,∧,∧,∨)
S 7→ ∧S

is a lattice anti-isomorphism.

Proof. Assume that the map ϕ is a lattice anti-isomorphism. Then Cα is intersective
because ϕ sends ∩ to ∨. Now consider S, S′ ⊆ C such that ∧S ≤ ∧S′. This is equivalent
to the following equality

∧S = (∧S) ∧ (∧S′).

The left hand side is equal to ∧(S ∪ S′) and because ϕ is a bijection, S = S ∪ S′ meaning
that S′ ⊆ S. Thus C has the inclusion property as well. Conversely assume C has both
the inclusion and the intersection property below α. The fact that ϕ sends ∪ to ∧ is true
for any subset of a lattice. The intersection property makes ϕ send ∩ to ∨. To see that ϕ

is injective, note that if ∧S = ∧S′ then the inclusion property forces S = S′. To see that
the map is surjective, notice that the image of ϕ, Im(ϕ) = {∧S|S ⊆ C} is a lattice, using
the properties we just exhibited. Moreover, any sublattice of L containing C contains
Im(ϕ). It is thus the sublattice of L generated by C, i.e., ⟨C⟩α∨,∧ = {∧S|S ⊆ C} and ϕ is
surjective.

Recall that finite lattices are boolean if and only if they are isomorphic to the powerset
of a finite set; this is the real reason for our terminology.

3.3 Morphisms

It is a recurring theme in algebra (and mathematics that use categories) that morphisms
are more important than objects. For antichains with the properties we just introduced,
we can compute morphisms between their corresponding objects in the derived category
more easily as per the following two results.

Proposition 1. Let C be an antichain of a lattice L and let I ⊆ L be an interval. Suppose the set
E = {S ⊆ C| ∧ S ∈ I} is an interval of the lattice P(C). Then there exists at most one integer
p such that HomDb(A)(MC, I[p]) is non zero. When such an integer exists, the hom space is one
dimensional.
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Sketch of proof. Because the set E is an interval, we can show that the total hom complex
has the shape:

0← k← · · · ← k
(|E|j ) ← · · · ← k← 0. (3.3)

Where k(
|E|

j ) is the term in degree j. This is the shape of the simplicial resolution associ-
ated to the standard simplex. By reindexing the components of the boundary maps we
show that these match the standard simplex resolution as well. In other words this is the

Koszul complex
⊗
(k

id−→ k). By the Künneth’s formula [1, Chapter 6.3], it is thus either
acyclic or concentrated in one degree when E contains only one element.

According to the proof, there exists a non trivial morphism if and only if the set E is
a singleton i.e. there exists a unique S ⊆ C such that ∧S ∈ I. In this case, the morphism
is concentrated in degree p = |S|. When the antichain is boolean, we can show that the
set E is always an interval which leads to a proof of the following theorem.

Theorem 3. Let C be a boolean antichain of a lattice L. Let I ⊆ L be an interval. There
exists at most one integer p such that HomDb(A)(MC, I[p]) is non zero. Moreover in this
case it is of dimension 1.

Example 1. Consider the lattice in Figure 2 and the strong antichain C = {c1, c2, c3}
below 1̂. Its associated module is the simple S1̂. Consider moreover the interval I =
[c1 ∧ c2, (c1 ∧ c2) ∨ (c1 ∧ c3)]. The set E = {S ⊆ C| ∧ S ∈ I} is the singleton {{c1, c2}}
which is an interval. So Proposition 1 applies and dim HomDb(PC, I[2]) = 1 while for
any other shift of the interval it is 0.

Example 2. Consider the lattice in Figure 1 and the antichain C = {c1, c2} below 1̂.
Its associated antichain module is the interval [c3, 1̂]. Consider moreover the interval
I = [0̂, c1]. Because the antichain is boolean, Theorem 3 applies. We can check that the set
E = {S ⊆ C| ∧ S ∈ I} is the interval [c1 ∧ c2, c1]. In that case, dim HomDb(PC, I[p]) = 0
for all integer p as E is not a singleton.

4 Fractionally Calabi-Yau Lattices

For a finite poset with incidence matrix I, the Coxeter matrix is defined as C = −I ×
(I−1)t. If the poset is a lattice, then it is closely related to its rowmotion bijection [8].
The notion of Calabi-Yau categories was introduced by Kontsevich in the late nineties.
A triangulated category T with a Serre functor S is said to be fractionally Calabi-Yau
if there exists ℓ and d such that Sℓ is isomorphic as a functor to the suspension functor
applied d times. We say that T is d

ℓ -Calabi-Yau. When the triangulated category is the
derived category of the incidence algebra of a poset, the action of the Serre functor on
the Grothendieck group of the category T coincides with the opposite of the Coxeter
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matrix. We can safely say that the Serre functor categorifies the opposite of the Coxeter
matrix. When the category T is fractionally Calabi-Yau, its Coxeter matrix has finite
order and its characteristic polynomial is a product of cyclotomic polynomials. Both
properties can be checked using a computer. In the case of posets with a unique max-
imal element or a unique minimal element, [10, Theorem 3.1] enables one to prove the
fractional Calabi-Yau property by looking at the action of the Serre functor on the pro-
jective indecomposable modules only. However, for a given poset the computation itself
is still in general very hard in general, see [2] and [11] for example. Using strong an-
tichains as described previously, we are able to provide a relaxation of [10, Theorem 3.1]
to help overcome that difficulty.

Theorem 4. Let L be a finite lattice, let m and n be integers and let (Cα)α∈L be a family
of antichains in L. For all α ∈ L, consider the following assumptions.

1. The antichain Cα is below α.

2. The module Mα
C is non zero and there is an isomorphism Sn Mα

Cα

∼= Mα
Cα
[m] in

Db(A).

3. The antichain Cα is strong.

If there exists a family of antichains (Cα)α∈L satisfying these assumptions then Db(A) is
m
n -Calabi-Yau.

Remark 2. When Cα = ∅ for all α, we recover [10, Theorem 3.1]. If Cα is the set of all
the elements covered by α then Mα

C = Sα. Such antichains will often be strong in the
examples that we consider. When it is the case the theorem can also be applied to a
family of modules which combines some projective indecomposables and some simples.
As we will see, the theorem can be applied to less obvious candidates as well.

5 Application: The lattice of order ideals of a grid and its
enhancements

In this section we discuss the lattice Jm,n in more details and we apply Theorems 3 and
4 on non trivial families of antichain modules in order to prove Theorems 1 and 2 of the
introduction.

5.1 Families of antichains

Recall that an order ideal I of a poset P is a subset I ⊆ P which is downward closed, i.e.
if x ∈ I and y ≤ x then y ∈ I. Order ideals of a poset can be ordered by inclusion and
form a distributive lattice when equipped with the union and the intersection of subsets.
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We now consider an element I of Jm,n i.e. an order ideal of the product
of total orders [m]× [n]. We can draw the ideal I as a path in an m× n
grid as in the figure on the right. The elements of the order ideal are
the points of the grid which lie below the path in the picture. Because I
is closed downward, counting the number of points in each column that
belong to I, say with increasing first value, gives a monotone sequence
which completely determines the ideal. We thus obtain a bijection

Jm,n ∼= {(a1, . . . , am)|ai ∈ {0, . . . , n} and a1 ≤ . . . ,≤ an} (5.1)

with non decreasing sequences. If the second set is equipped with term wise comparison
this is an isomorphism of posets. We call these non decreasing sequences partitions. They
can also be written as (λµ1

1 , . . . , λ
µr
r ) with ∑i µi = m, where µi encodes the multiplicity of

the value λi and λi ̸= λj if i ̸= j.
To apply Theorems 3 and 4, we consider several antichains below x for each x ∈ Jm,n.

These antichains can be encoded as or enhancements of x.

Definition 1. An enhanced partition is a sequence (λ
µ1
1 , . . . , λ

µr
r |nµr+1) where multiplicities

sum to m. We allow µr+1 = 0. If µr+1 ̸= 0 we say the partition is strictly enhanced.
A partition with µr+1 = 0 is called plain. Call Em,n the set of enhanced partitions. We
easily count (m+n+1

m ) enhanced partitions.

For an enhanced partition α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1) define the mutable coefficients to be

Sα = {ϵ, . . . , r} the indices corresponding to nonzero coefficients. The number ϵ is either
1 or 2. Please remark that this excludes the coefficients beyond the enhancement bar.
Similarly, we can define a left enhanced partition (0µ0 |λµ1

1 , . . . , λ
µr
r ).

Definition 2. Take an enhanced partition α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1). For any subset J of Sα

define a new partition qJ(α) = ((λ′1)
µ1 , . . . , (λ′r)µr |nµr+1) by

λ′i =

{
λi − 1 if i ∈ J
λi otherwise.

Consider now the set Cα = {qi(α)|i ∈ Sα}. Because qi(α) and qj(α) differ from α

at different indices, their associated plain partitions form an antichain. We denote Pα

the resolution associated to it. Here is another family of transformations which leads to
antichains.

Definition 3. Let α = (λ
µ1
1 , . . . , λ

µr
r |nµr+1) and take i ∈ Sα − {r}. We set

pi(α) =

{
(01, λ

µ1−1
1 , λ

µ2
2 . . . |nµn+1) if i = 0,

(λ
µ1
1 . . . λ

µi+1
i , λ

µi+1−1
i+1 . . . |nµn+1) otherwise.

(5.2)

For J = (j1, . . . , jk) a sequence of elements Sα − {r}, set pJ = pj1 ◦ · · · ◦ pjk .
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For all enhanced partition α consider the set C∨α = {pi(α)|i ∈ {0, . . . , r − 1} or i =
r if µr+1>0}. The corresponding plain partitions form an antichain below α. It is easy to
prove that Cα and C∨α are boolean antichains below α. We recover these two results of
[11]. The second one is an easy categorification of [11, Proposition 4.2].

Proposition 2 ([11, Proposition 2.13]). Let α be a right enhanced partition. Then Pα is a
projective resolution of the interval [ f (α), α] where the function f is defined by

f : (λµ1
1 , . . . , λ

µr
r |nµr+1) 7→ (0µ1−1|λµ2

1 , . . . , λ
µr+1
r ). (5.3)

Proposition 3. Let α be a right enhanced partition. Then Sm+n+1(Pα) ∼= Pα[mn].

Combining this with Theorem 4 we obtain a proof of Theorem 1. What remains of
this section is dedicated to the description of the full subcategory of the derived category
Db(Jm,n) whose objects are the Pα with α ∈ Em,n. We write it Ym,n.

5.2 Elementary morphisms

Figure 5: Graph of the category Y2,2

We first describe the morphisms ϕ : Pα →
Pβ using the combinatorics of the parti-
tions introduced in the previous subsec-
tion combined with Theorem 3.

Proposition 4. Let ϕ : Pα → Pβ[i] be a
non zero morphism in Ym,n. Then there ex-
ists a unique subset J of Sα such that ϕ factors
through PqJ(α)[i] and |J| = i completing the
following diagram.

Pα Pβ[|J|]

PqJ(α)[|J|]

ϕ

u µ

If we order J = {j1, . . . jk} such that jt < jt+1, then the extension u : Pα → PqJ(α) decomposes as
Pα → Pq{j1}(α)

[1] → · · · → PqJ(α)[|J|] up to signs. Similarly there exists a sequence d0, . . . , ds

such that for all 0 ≤ j < s, 0 ≤ dj < mj+1, for j = s, −ms < ds ≤ ms+1, α = pds
s ◦ · · · ◦ pd0

0 (β)
and the degree 0 morphism µ : PqJ(α) → Pβ factors through each of the objects associated to the
intermediate partitions.

Theorem 2 follows from this proposition. More precisely, we construct a tilting com-
plex with the set of plain partitions and show that its endomorphism algebra is the
higher Auslander algebra Am−1

n+1 .
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5.3 Through the lens of configurations

Using a clever bijection of Yıldırım we can give a more satisfying description of the
category Ym,n. Let Z = {−m, . . . ,−1, 0, 1, . . . , n} be a set of representatives of Z/(m +
n)Z. A configuration C = {c1 < · · · < cm} is a strictly increasing sequence of m elements
in Z . We write Cm,n the set of configurations of length m on Z . It is easy to see that
|Cm,n| = (m+n+1

m ). Given a partition α we can construct a configuration containing α’s
coefficients in its nonnegative side and encoding the multiplicities of α in its negative side.
Write xi to record the index of the last occurrence of the ith coefficient. It will be called
the ending index. The negative side is thought of as the indices of the elements of the
sequence α but with a minus sign. Remove the opposite of the ending index of each
coefficient. Call the resulting configuration the right configuration associated to α, write
it Rα. We denote ϕ the map sending α to Rα.

Example 3. Take n = 7, m = 5 and consider the partitions a = (0, 2, 3, 7|7). For this
partition, r = 4 and coefficients end at indices 1, 2, 3 and 4. The associated right configu-
ration is {−5 < 0 < 2 < 3 < 7}, containing the values 0, 2, 3, 7 and omitting the opposite
of the ending coefficients −1,−2,−3 and −4. It is represented in an abacus as follows:

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
• • • • •

Note that an enhanced partition is plain if and only if the column −m of its abacus is
empty.

Proposition 5 ([11, Proposition 3.3]). The map ϕ is a bijection between Em,n and Cm,n.

Indeed, partitions are entirely determined by their coefficients and multiplicities which
can be recovered from the positive elements of a configurations and its negative gaps.

Definition 4. Consider two sequences (x1, . . . , xk) and (y1, . . . , yk) of length k in J0, NK.
Define a sequence on Z by setting yl = yr + q · N where l = g× k + r is the euclidian
division. We say that they interpolate circularly if for all integers h, f and l such that
h ≡ l ≡ f − 1 mod [k] we have xh ≤ yl < x f .

Example 4. The configurations {−5 < 0 < 2 < 3 < 7} and {−5 < 0 < 2 < 3 < 6}
interpolate circularly.

Definition 5. Let n and m be integers. Define the category Im,n as follows :

• set Ob(Im,n) = {increasing sequences of length m in J0, m + nK};

• given two increasing sequences a and b in Ob(Im,n), set

Im,n(a, b) =

{
k if a and b interpolate circularly,
0 otherwise.
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Conjecture 1. The categories Ym,n and Im,n are equivalent.

Theorem 2 also follows from this conjecture, however its proof only involves part of Ym,n
and Am−1

n+1 is Morita equivalent to the corresponding subcategory of Im,n.

Acknowledgements

I would like to thank my supervisor Baptiste Rognerud for introducing me to the subject
as well as for all the discussion, guidance and careful reading of my work at every step
of the way.

References

[1] H. Cartan and S. Eilenberg. Homological algebra. Vol. 19. Princeton Math. Ser. Princeton
University Press, Princeton, NJ, 1956.

[2] F. Chapoton. “On the Coxeter transformations for Tamari posets”. Can. Math. Bull. 50.2
(2007), pp. 182–190. doi.

[3] F. Chapoton. “Posets and Fractional Calabi-Yau Categories”. 2023. arXiv:2303.11656.

[4] T. Dyckerhoff, G. Jasso, and Y. Lekili. “The symplectic geometry of higher Auslander
algebras: Symmetric products of disks”. Forum of Mathematics, Sigma 9 (2021), e10. doi.

[5] O. Iyama. “Auslander correspondence.” Adv. Math. 210.1 (2007), pp. 51–82. doi.

[6] O. Iyama. “Auslander-Reiten theory revisited.” Trends in representation theory of algebras and
related topics. Proceedings of the 12th international conference on representations of algebras and
workshop (ICRA XII). Zürich: European Mathematical Society (EMS), 2008, pp. 349–397.

[7] O. Iyama and R. Marczinzik. “Distributive lattices and Auslander regular algebras”. Adv.
Math. 398 (2022). Id/No 108233, p. 27. doi.

[8] R. Marczinzik, H. Thomas, and E. Yildirim. “On the interaction of the Coxeter transforma-
tion and the rowmotion bijection”. 2022. arXiv:2201.04446.

[9] I. Reiten. “Tilting theory and cluster algebras”. 2010. arXiv:1012.6014.

[10] B. Rognerud. “The bounded derived categories of the Tamari lattices are fractionally
Calabi-Yau”. Adv. Math. 389 (2021). Id/No 107885, p. 31. doi.

[11] E. Yildirim. “The Coxeter transformation on cominuscule posets”. Algebr. Represent. Theory
22.3 (2019), pp. 699–722. doi.

[12] A. Zimmermann. Representation theory. A homological algebra point of view. Vol. 19. Algebr.
Appl. Cham: Springer, 2014. doi.

https://dx.doi.org/10.4153/CMB-2007-019-x
https://arxiv.org/abs/2303.11656
https://dx.doi.org/10.1017/fms.2021.2
https://dx.doi.org/10.1016/j.aim.2006.06.003
https://dx.doi.org/10.1016/j.aim.2022.108233
https://arxiv.org/abs/2201.04446
https://arxiv.org/abs/1012.6014
https://dx.doi.org/10.1016/j.aim.2021.107885
https://dx.doi.org/10.1007/s10468-018-9795-3
https://dx.doi.org/10.1007/978-3-319-07968-4

	Introduction
	Representations of partially ordered sets
	Doing homological algebra with antichains
	Antichains
	Boolean antichains
	Morphisms

	Fractionally Calabi-Yau Lattices
	Application: The lattice of order ideals of a grid and its enhancements
	Families of antichains
	Elementary morphisms
	Through the lens of configurations


