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Abstract. We define generalized Schröder polynomials Sλ(q, t, a) for triangular par-
titions and prove that these polynomials recover the triangular (q, t)-Catalan poly-
nomials of [2] at a = 0. Moreover, we show that the Poincaré polynomials of the
reduced Khovanov-Rozansky homology of Coxeter knots of these partitions are given
by Sλ(q, t, a). Finally, combined with recent results in [8], we compute the Poincaré
polynomial of the (d, dnm + 1)-cable of the (n, m)-torus knot, thus proving a special
case of the Oblomkov-Rassmusen-Shende conjecture [16, 18] for generic unibranched
planar curves with two Puiseux pairs.

1 Introduction

A fundamental pursuit in knot theory for the last century has been the classification of
knots and links. One particularly effective method has been the study of certain homol-
ogy theories that realize the knot as certain chain complexes, whose Poincaré polyno-
mials, which compute the graded dimensions of the homology groups, are then used as
knot invariants. One such especially celebrated homology theory is (reduced) Khovanov-
Rozansky homology. This tri-graded theory associates to each link L a polynomial in three
variable PKR

L (q, t, a). It turns out that computing these polynomials explicitly is very
difficult, and the pursuit of a closed form for them has spurned a remarkable volume
of deep and surprising results bridging combinatorics with low dimensional topology
and algebraic geometry. One of the only cases where these polynomials are explicitly
known is the case of torus knots and links, where by transforming these knots to certain
binary sequences and defining a family of recursions, Hogancamp and Mellit were able
to compute explicit solutions [11, 15]. The connections between these polynomials and
(q, t)-Catalan combinatorics have been deeply established [5, 12, 10], with the a = 0
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specialization of PKR
L (q, t, a) for a torus knot recovering the (q,t)-Catalan polynomial and

higher a powers equaling (q,t)-Schröder polynomials.
One of our first main results is the generalization of (q,t)-Schröder polynomials to the

context of triangular partitions, which are defined as maximal partitions that fit under a
line of arbitrary slope (i.e. certain Dyck paths under lines with non-integer intercepts.).
These partitions were thoroughly studied by Bergeron and Mazin [1]. In particular, our
triangular Schröder polynomial recovers at a = 0 the triangular (q, t)-Catalan polyno-
mials studied in [1] that appeared in the generalized shuffle theorem under any line
[2]. Our construction relies on certain recursions introduced by Gorsky-Mazin-Vazirani
[9] using so called (m, n)-invariant subsets, which allow us to produce certain binary
sequences from the triangular partitions and compute them using the recursions.

Recently, Oblomkov and Rozansky considered Coxeter links, which contain torus
knots and links as special cases, and identified their homology with certain sections
on the flag Hilbert scheme [17]. Even more recently, Galashin and Lam introduced a
family of knots that arise directly from certain monotone paths on an m × n grid and
proved that all monotone links are Coxeter. Thus, since the Gorsky-Mazin-Vazirani re-
cursions agree with the Hogancamp-Mellit recursions, using the results above we prove
that the Poincaré polynomial of the reduced Khovanov-Rozansky homology of Coxeter
knots arising from triangular partitions is precisely our triangular Schröder polynomial.

The next natural family of links to try to understand are cabled torus knots. Infor-
mally, a cabled knot is a knot within a knot, so that the string that makes up the knot
locally carries a smaller knot on it. A highly nontrivial and celebrated conjecture due to
Oblomkov-Rasmussen-Shende, relates the Khovanov-Rozansky homology of algebraic
links to certain plane curve singularities on the Hilbert scheme of points. Combining
results in [8] with our previous results above, we compute the Poincaré polynomial for a
certain family of cabled knots, proving a special case of the Oblomkov-Rasmussen-Shende
conjecture for unibranched planar curves with two Puiseux pairs.

2 Background and Definitions

2.1 Recursions for the Poincaré Series of Link Homology

In [11] the third author and Anton Mellit introduced a recursive method for computing
the Poincaré series of the reduced Khovanov-Rozansky homology of torus links. Given
two finite binary sequences u and v with the same number of 1’s, they introduced the
power series Ru,v(q, t, a) via the following recursive relations:

R0u,0v = t−|u|Ru1,v1 + qt−|u|Ru0,v0, R1u,0v = Ru1,v, R∅,0n =

(
1 + a
1 − q

)n
,
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Figure 1: (Left) Steps 1-4 in constructing the link Lu,v for u = 0010 and v = 010.
(Right) Two diagrams for the knot L0010,010. Middle right: the closure of the diagram to
its left (step 5). Far right: an equivalent closure considered in [11].

R1u,1v = (t|u| + a)Ru,v, R0u,1v = Ru,v1, R0m,∅ =

(
1 + a
1 − q

)m
,

where |u| is the number of 1’s in u and R∅,∅ = 1. Let l(u) denote the length of u.

Theorem 1 ([11]). Let (n, m) be any positive integers. The Poincaré series of the reduced
Khovanov-Rozansky homology of the (n, m)-torus link is given by

PKR
Ln,m

(q, t, a) = (1 − q)R0n,0m = R0n−11,0m−11.

Furthermore, it follows from their construction that for |u| = |v| = 1, the recurrence
applied to Ru,v(q, t, a) will terminate and compute the Poincaré series of the reduced
Khovanov-Rozansky homology for the link Lu,vconstructed as follows:
Step 1: Mark ℓ(v) points on the bottom edge and ℓ(u) points on the left edge of [0, 1]2,
labeled with the sequences starting from the bottom left corner. Mark also the points on
the top and right edges directly across from marked points labeled by 0.
Step 2: Starting with the lowest point on the left edge and leftmost point on the bottom
edge, connect the dots with diagonal non-intersecting lines until all points are matched.
Step 3: Erase the tail of the line connected to the point labeled 1 on the bottom wall and
connect it to right side of [0, 1]2, going above all other strands in the process.
Step 4: Erase the tail of the line connected to the point labeled 1 on the left wall, pass
it underneath all other strands beneath it, and connect it once again to the left wall, but
now in the first position, directly across the new marked point created in Step 3.
Step 5: Close the diagram by identifying the edges in the usual way for a torus.

Example 2. Consider u = 0010 and v = 010 with lengths ℓ(u) = 4, ℓ(v) = 3, and with
|u| = |v| = 1. Steps 1 and 2 followed by 3 and 4 will yield the left two diagrams in
Figure 1. It’s closure, Step 5, is the third diagram. Iteratively applying the recurrence we
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see that the Poincare series of the KhR-homology of Lu,v is then equal to:

R0010,010 = t−1R0101,101 + qt−1R0100,100 = . . .

= t−1(t + a)(a)R∅,∅ + (qt−1)2(a)R∅,∅ + (qt−1)(t−1)(t + a)(a)R0,∅

= a(t−1(t + a) + (qt−1)2) + (qt−1)(t−1)(t + a)(a)
(1 + a)
1 − q

.

2.2 Invariant Subsets and Dyck Paths

Given positive integers m and n, an (n, m)-Dyck path is a lattice path from (m, 0) to (0, n)
consisting exclusively of north and west steps that stays weakly below the diagonal line
y = n − n

m x. Indexing each cell by its top right lattice point, for any such choice of
(n, m) we define an Anderson filling on each of the cells of the lattice via the function
γ : Z2 → Z by γ(x, y) = mn − nx − my.

Definition 3. A subset ∆ ⊂ Z≥0 is called (n, m)-invariant if ∆ + n ⊂ ∆ and ∆ + m ⊂ ∆.
Let In,m denote the set of all (n, m)-invariant subsets. In addition, an (n, m)-invariant
subset ∆ is called 0-normalized if 0 ∈ ∆. We will use the notation I0

n,m for the set of
0-normalized (n, m)-invariant subsets.

If n and m are relatively prime then the set of (n, m)-Dyck paths is in a natural
bijection with the set of 0-normalized (n, m)-invariant subsets. Namely, given an (n, m)-
Dyck path D let Gaps(D) be the set of positive Anderson labels corresponding to the
cells above D (positivity of a label is equivalent to the cell fitting under the diagonal). The
corresponding 0-normalized (n, m)-invariant subset is given by ∆(D) = Z≥0 \ Gaps(D).
It is not hard to see that this defines a bijection.

The rational (q, t)-Catalan polynomials and the rational Schröder polynomials are
usually defined in terms of the (n, m)-Dyck and Schröder paths. However, it is more
suitable for us to follow [6, 7] and define these polynomials in terms of the invariant
subsets. The two approaches are equivalent due to the bijection described above. To do
so, we need the following statistics. Let ∆ ∈ In,m and define:

• the area to be the number of gaps in ∆, area(∆) := ♯(Z≥0 \ ∆).

• the n-generators of ∆ as the set ngen(∆) := ∆ \ (∆ + n) = {a ∈ ∆ : a − n /∈ ∆}.

• the codinv as the number of gaps in length m intervals beginning at n-generators:

codinv(∆) := ∑
a∈ngen(∆)

♯{a ≤ g < a + m : g /∈ ∆}, (2.1)

dinv(∆) := δ(n, m)− codinv(∆), δ(n, m) :=
(n − 1)(m − 1)

2
.
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Definition 4. For each coprime pair (m, n), the rational (q, t)-Catalan polynomial, de-
note Cn,m(q, t), is given by:

Cn,m(q, t) := ∑
∆∈I0

n,m

qarea(∆)tdinv(∆) = (1 − q) ∑
∆∈In,m

qarea(∆)tdinv(∆).

In order to define Schröder polynomials, we will need a couple more ingredients.

• Let Cogen(∆) := {a ∈ Z : a /∈ ∆, a + n ∈ ∆, a + m ∈ ∆} be the set of double co-
generators of ∆.

• Let k ∈ Z. Set λk(∆) := ♯{a ∈ ngen(∆) : k + n + 1 ≤ a ≤ k + n + m}.

Definition 5. For each coprime pair (m, n), the Schröder polynomial Sn,m(q, t, a) is:

Sn,m(q, t, a) := ∑
∆∈I0

n,m

qarea(∆)tdinv(∆) ∏
k∈Cogen(∆)

(
1 + at−λk(∆)

)
.

Example 6. In Figure 2, the bijection between (3, 4)-Dyck paths and the 0-normalized
(3, 4)-invariant subsets is illustrated, complemented with a computation of the area and
dinv statistics, as well as the factors necessary for the Schröder polynomial, for two out
of five invariant subsets in I0

3,4. The rest are computed similarly. Summing all together,
one obtains the Schröder polynomial:

S3,4(q, t, a) =t3(1 + a)(1 + at−1)(1 + at−2) + qt2(1 + a)(1 + at−1) + qt(1 + a)(1 + at−1)

+ q2t(1 + a)(1 + at−1) + q3(1 + a)

=q3 + q2t + qt2 + t3 + qt + a(q3 + q2t + qt2 + t3 + q2 + 2qt + t2 + q + t)

+ a2(q2 + qt + t2 + q + t + 1) + a3.

2.3 Recursions for Invariant Subsets

In [9] the fourth author together with Gorsky and Vazirani introduced a recursion com-
puting the rational (q, t)-Catalan series and showed that their recursion is equivalent to
the Hogancamp-Mellit recursion in the case of the torus link. Hence, in the relatively
prime case the Gorsky-Mazin-Vazirani recursion recovers the (q, t)-Catalan polynomials.

Let (m, n) be a pair of positive relatively prime integers. In order to define the re-
cursion, one needs to consider subfamilies in the set of invariant subsets In,m given by
fixing the intersection of the subsets with the interval [0, n + m − 1]. Let w ∈ {0, 1}n+m

be a binary sequence of length n + m.

Definition 7. Set Iw := {∆ ∈ In,m : ∀0 ≤ i < n + m, i ∈ ∆ ⇔ wi = 1} and define:

Pw(q, t, a) := ∑
∆∈Iw

qarea(∆)tcodinv(∆) ∏
k∈Cogen(∆)∩Z≥0

(1 + atλk(∆)). (2.2)
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Figure 2: Three out of five (3, 4)-Dyck paths are on the left, with the cells correspond-
ing to the gaps in yellow. The corresponding (3, 4)-invariant subsets are in the second
column, together with the area, 3-generators, codinv, and dinv in the third column,
and the corresponding Schröder factor is in the fourth.

Then, the Schröder polynomial can be obtained from (2.2),

Sn,m(q, t, a) =
(1 − q)tδ(n,m)

qn+m P0n+m(q, t−1, a) =
tδ(n,m)

qn+m−1 P0n+m−11(q, t−1, a).

The polynomials Pw satisfy a recursion, however, in order to match this recursion to
the Hogancamp-Mellit recursion, certain adjustments are required.

First, we need to replace the sequence w of length n + m by two sequences (x, y)
in the alphabet {0, •, 1} of lengths m and n respectively. The sequence x records gaps
(encoded by 0), n-generators (encoded by 1), and the rest of the elements of ∆ (encoded
by •) on the interval [n, n + m − 1]. Similarly, the sequence y records gaps, m-generators,
and the rest of the elements of ∆ on the interval [m, n + m − 1]. In other words,

Definition 8. Let x, y be sequences as above. Let Ix,y be the set of ∆ ∈ In,m such that:

∀0 ≤ k < m


xk = 0 ⇔ k + n /∈ ∆,
xk = 1 ⇔ k + n ∈ ngen(∆),
xk = • ⇔ k ∈ ∆,

∀0 ≤ k < n


yk = 0 ⇔ k + m /∈ ∆,
yk = 1 ⇔ k + m ∈ mgen(∆),
yk = • ⇔ k ∈ ∆.

Example 9. Let (n, m) = (4, 7) and ∆ = Z≥0 \ {0, 1, 2, 3, 4, 6, 7, 8, 10}. Then, the associated
binary sequence w = 00000100010 yields the ternary sequences x = (01000 • 0) and y =
(0010), since the only 4-generator in [4, 10] is 5 and the only 7-generator in [7, 10] is 9. In
particular, 9 is not a 4-generator since 9− 4 = 5 ∈ ∆. Thus, ∆ ∈ I00000100010 = I01000•0,0010.

The statistics on In,m are modified as follows. Set:

area′(∆) = ♯{k ∈ Z≥n+m : k /∈ ∆} = ♯ (Gaps(∆) ∩ Z≥n+m) ,

codinv′(∆) = ∑
a∈ngen(∆)

♯{k ∈ Z≥n+m : a ≤ k < a + m, k /∈ ∆} − λ(∆)(λ(∆)− 1)
2

,
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where λ(∆) := λ−1(∆) = ♯{a ∈ ngen(∆) : n ≤ a < n + m}.

Definition 10. Given sequences x and y as above, let

Qx,y(q, t, a) := ∑
∆∈Ix,y

qarea′(∆)t−codinv′(∆) ∏
k∈Cogen(∆)∩Z≥0

(1 + at−λk(∆)).

Note that for any ∆ ∈ I0n+m one gets area′(∆) = −n − m + area(∆), codinv′(∆) =
codinv(∆), and all the double co-generators are non-negative. Therefore,

Q0m,0n(q, t, a) = q−n−mP0n+m(q, t−1, a).

Theorem 11 ([9]). The following recursions hold:

Q0u,0v = t−|u|Qu1,v1 + qt−|u|Qu0,v0, Q1u,0v = Qu1,v•, Q•u,•v = Qu•,v•,

Q1u,1v = (t|u| + a)Qu•,v•, Q0u,1v = Qu•,v1, Q∅,∅ = 1.

Finally, notice that in the recursion for Q one can completely ignore all the •’s. Also,
it follows that the recursion always terminates in Q∅,∅, so one doesn’t need the normal-
ization conditions for Q∅,0n and Q0m,∅.

Theorem 12 ([9]). Let (u, v) be the sequences obtained from the sequences (x, y) by ignoring
all •’s. Then

Ru,v(q, t, a) = Qx,y(q, t, a).

Corollary 13 ([15, 9]). The Poincaré polynomial of the reduced Khovanov-Rozansky homology
of the (n, m)-torus knot is given by

R0m−11,0n−11(q, t, a) =Q0m−11,0n−11(q, t, a) =
P0n+m−11(q, t−1, a)

qn+m−1 =
Sn,m(q, t, a)

tδ(n,m)
.

Remark 14. The last formula was first proven by Anton Mellit in [15]. We follow notations
from [11] and [9], where the result was generalized to torus links.

2.4 Monotone and Coxeter Links

In [4] Galashin-Lam study a family of links, called monotone that arise from certain
curves on the plane. They define a new invariant, the elliptic Hall algebra superpolynomial,
which they prove recovers the HOMFLY polynomial of LC and conjecture agrees with
the Poincaré series of the Khovanov-Rozansky homology of any algebraic link LC.

Definition 15. Let C denote a curve from (0, n) to (m, 0). A monotone link LC is a
projection onto R2/Z2 of a curve C such that the x- and y-coordinates of C are monotone
increasing and decreasing, respectively1. Trace the projection of C starting from the left
top corner, crossing the earlier strand on top.

1This differs slightly from the definition in [4] by a flip sending x 7→ −x.
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•

•

Figure 3: The curve C on the left and its projection onto [0, 1]2 and annular closure
βC, on the right. The associated triangular partition is displayed in red, so that µ =

(3, 2, 1, 0, 0) with b = (0, 1, 1, 1) and e = (1, 1, 1). It is straightforward to verify that the
braid βcox

b,e = JM1
2 JM1

3 JM1
4σ1σ2σ3 is isotopic to βC.

It is well known [11] that if C is the straight diagonal line, then LC is the (m, n) torus
link, with the special case of m, n relatively prime yielding a knot.

Let A denote the annulus. Given a curve C, we can construct its annular closure
βC ∈ A × [0, 1] as follows. Consider the projection of C onto [0, 1]2. Now, identify the
top and bottom boundaries so that for each point x ∈ (0, 1) for which (x, 0) and (x, 1)
are in C, the line connecting them lies underneath all other strands. Denote the resulting
braid in A × [0, 1] by βC (see Figure 3).

Denote by σi ∈ Bn, with Bn the braid group, the positive crossing of the ith and i + 1st

strands, i.e. the ith strand is above the i + 1st strand.

Definition 16. Given sequences b = (b1, . . . , bm) ∈ Zm
≥0 and e = (ϵ1, . . . , ϵm−1) ∈

{0, 1}m−1, the Coxeter braid βcox
b,e is given by:

βcox
b,e := JMb1

1 . . . JMbm
m σϵ1

1 . . . σ
ϵm−1
m−1 , (2.3)

where JMi := σi . . . σm−1σm−1 . . . σi for each 1 ≤ i ≤ m.

To any curve C, we can assign a Coxeter braid βcox
C in the following way. Let

µ = (n, µ1, . . . , µm) be such that (µ1, . . . , µm) is the transpose of the triangular parti-
tion corresponding to the curve C. Set bm−i+1 = µi−1 − µi (with µ0 = n) and for each
1 ≤ i ≤ m − 1, set ϵi = 0 if C passes through the lattice point (i, j) for some j ∈ Z, with
ϵi = 1 otherwise. Then for eC = (ϵ1, . . . , ϵm−1) and bC = (b1. . . . , bm), let βcox

C := βcox
bC,eC

.

Theorem 17 ([4]). The braid βcox
C is conjugate to the annular closure βC of C. In particular, all

monotone links in A × [0, 1] are Coxeter links, and all Coxeter links arise in this way.
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Figure 4: The triangular partition λ = (2, 3) = τ3.2,5.6 with (m, n) = (4, 7) and the
Anderson labels denoted in blue.

3 Main Results

3.1 Schröder Polynomials for Triangular Partitions

Definition 18. A partition λ is called triangular if there exist two not necessarily integral
points (0, s) and (r, 0) such that λ consists of all the boxes below the line connecting these
points, in which case we denote λ by τr,s.

Evidently, for any given triangular partition λ, there exist many choices for positive
real numbers r and s such that λ = τr,s (see [1] for details). In particular, one can always
choose r and s in such a way that λ = τr,s, and r/s = n/m, where (n, m) are positive
relatively prime integers with r ≤ n (equivalently, the line connecting (r, 0) to (0, s)
is below the line connecting (n, 0) to (0, m)). Generalized (q, t)-Catalan polynomials
corresponding to triangular partitions appeared in the generalized shuffle theorem [2].

We claim that to any triangular partition τr,s one can associate a pair of binary se-
quences u(s, t) and v(s, t) [3], which we explain how to construct in Example 20 below.
With this in hand, we extend the Schröder polynomial to the triangular setting.

Definition 19. Let λ = τr,s and (n, m) be as above with associated sequences u(r, s)
and v(r, s) as in Example 20. The (q,t)-Schröder polynomial for triangular partitions is
defined as Sλ(q, t, a) := t|λ|Ru(r,s),v(r,s)(q, t, a).

Example 20. Let λ = τ3.2,5.6 = (2, 3) as in Figure 4 and observe that the line connecting
(0, 3.2) and (5.6, 0) has the same slope as the diagonal line connecting (0, 4) and (7, 0).
We call the line connecting (0, 3.2) and (5.6, 0) the shifted diagonal, with (n, m) = (4, 7)
denoting the closest line above it with equal slope and integer x and y -intercepts.

Let W = {−5,−4 . . . , 5} = [−5, 5] be the window of labels of all cells intersected by
the shifted diagonal (shaded yellow in Figure 4). The subdiagrams of λ are in bijection
with the subfamily I0

3.2,5.6 ⊂ I0
4,7 consisting of subsets ∆, such that {1, 2, 3, 5} ∩ ∆ = ∅,

where {1, 2, 3, 5} = Gaps(λ). This is equivalent to saying that ∆ ∩ W = {0, 4}. Hence,

I0
3.2,5.6 ={∆ ∈ I0

4,7 : {1, 2, 3, 5} ∩ ∆ = ∅}
={∆ ∈ I0

4,7 : ∆ ∩ W = {0, 4}} = {∆ ∈ I0
4,7 : ∆ + 5 ∈ I00000100010}.
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Gaps ∩ Z≥6 = {6, 9, 13} 4-gen = {0, 7, 10, 17} Cogen = {3, 13}
area = 3 codinv = 4, dinv = 1 (1 + a)(1 + at−1)
Gaps ∩ Z≥6 = {6, 9} 4-gen = {0, 7, 10, 13} Cogen = {3, 6, 9}
area = 2 codinv = 2, dinv = 3 (1 + a)(1 + at−1)(1 + at−2)
Gaps ∩ Z≥6 = {6, 10} 4-gen = {0, 7, 9, 14} Cogen = {5, 10}
area = 2 codinv = 3, dinv = 2 (1 + a)(1 + at−1)

Figure 5: For three of the nine ∆ ∈ I0
3.2,5.6 we record the gaps that are greater than

5, since only those contribute to area and codinv (respectively, area′ and codinv′ on
I01000•0,0010). There cannot be any double co-generators below the interval W = [0, n +

m − 1]− 5, therefore all co-generators are used for the Schröder factors.

That is, the family I0
3.2,5.6 is simply I00000100010 = I01000•0,0010 from Example 9 shifted

down by 5. So setting u(3.2, 5.6) = 010000 and v(3.2, 5.6) = 0010, we obtain Sλ(q, t, a) =
t5R010000,0010(q, t, a). In Figure 5 we illustrate the computation of the contributions to-
wards Sλ(q, t, a) of three of the nine invariant subsets in I0

3.2,5.6. All together:

Sλ(q, t, a) =q5(1 + a) + q4t(1 + a)(1 + at−1) + q3t2(1 + a)(1 + at−1)

+q3t(1 + a)(1 + at−1) + q2t3(1 + a)(1 + at−1)(1 + at−2)

+q2t2(1 + a)(1 + at−1) + qt3(1 + a)(1 + at−1)

+qt4(1 + a)(1 + at−1)(1 + at−2) + t5(1 + a)(1 + at−1)(1 + at−2).

Note that plugging in a = 0 we recover the corresponding (q, t)-Catalan polynomial:

Cλ(q, t) = Sλ(q, t, 0) = q5 + q4t + q3t2 + q2t3 + qt4 + t5 + q3t + q2t2 + qt3.

With the definition of the Schröder polynomial established for any triangular parti-
tion, we can now state our first main theorem.

Theorem 21. [3] The triangular Schröder polynomial Sλ(q, t, a) at a = 0 specializes to the
triangular (q, t)-Catalan polynomial of [1] and [2]. Hence, for λ = τr,s as before, we obtain that

Cλ(q, t) = Sλ(q, t, 0) = t|λ|Ru(r,s),v(r,s)(q, t, 0).

By construction, the polynomial Sλ(q, t, a) depends on a choice of a shifted diagonal.
At a = 0 this corresponds to choosing an appropriate slope in the definition of the
dinv statistic [1, 2]. The Catalan polynomial doesn’t depend on that choice (this follows
from the shuffle theorem of [2], see also [13, 14]). The shuffle theorem argument can
be generalized to show that the full Schröder polynomial also depends only on the
partition. Nonetheless, this will also follow from our results below.
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Figure 6: Left: λ = (3, 2) together with the monotone curve C obtained by augmenting
the shifted diagonal. Second: the monotone knot Kr,s drawn on a torus. We cut a
vertical strip on the right (the red line) and reattach it on the left for the third picture.
We also close the vertical green strand. Finally, we pull the green strand from under
the blue ones to obtain the picture on the right, which is the knot L010000,0010.

3.2 The Monotone Knot of a Triangular Partition

Let λ = τr,s be a triangular partition, and (r, s) be as in the previous section: r/s = n/m,
where n, m ∈ Z>0 are relatively prime and r ≤ n. The monotone curve C from (0, ⌈r⌉) to
(⌈s⌉, 0) is constructed by augmenting the shifted diagonal connecting (0, r) to (s, 0) by
adding an almost vertical segment at the top and an almost horizontal segment at the
bottom (see Figure 6). Let Kr,s be the closure of the corresponding monotone braid βC
(see Section 2.4). It follows from [4, Prop. 7.5] that Kr,s is isotopic to the closure of the
Coxeter braid βcox

C , which only depends on the partition λ and not on the choice of the
shifted diagonal. We will call it the Coxeter knot of the partition λ and denote it Kλ.

Theorem 22 ([3]). The monotone knot Kr,s is isotopic to the knot Lu(r,s),v(r,s) (see Section 2.1 for
a definition). In particular, the Poincaré polynomial of the reduced Khovanov-Rozansky homology
of the Coxeter knot Kλ is given by PKR

Kλ
(q, t, a) = Ru(r,s),v(r,s)(q, t, a) = t−|λ|Sλ(q, t, a).

Remark 23. Theorem 22 implies that the Schröder polynomial Sλ(q, t, a) does not depend on the
choice of the shifted diagonal (0, r)− (s, 0), but only on the triangular partition λ = τr,s.

Example 24. In Figure 6 we illustrate the construction of the monotone knot Kr,s and its
isotopy to Lu(r,s),v(r,s) for (r, s) = (3.2, 5.6), continuing Example 20.

In the case when (r, s) = (dn, dm), where d, n, m are integers and n and m are rela-
tively prime, Galashin and Lam in [4, Lem. 8.1] proved that the monotone knot Kτdn,dm is
the (d, dnm + 1)-cable of the (n, m)-torus knot, which is an algebraic knot: it can be ob-
tained as the intersection of the planar curve (x = tdn, y = tdm + tdm+1) with a small 3D
sphere around the origin in C2. Such curves were studied by the fourth author, Gorsky,
and Oblomkov in [8], were they showed that the Poincaré polynomial PJC(t) of the
Compactified Jacobian of such a curve is a specialization of the (dn, dm) (q, t)-Catalan
polynomial. Combining this with our Theorem 22, we obtain

PJC(t) = t2δCnd,md(1, t−2) = t2δSτdn,dm(1, t−2, 0) = PKR
Kτdn,dm

(1, t−2, 0),
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which is a special case of the Oblomkov-Rasmussen-Shende conjecture for such curves.
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