
Séminaire Lotharingien de Combinatoire 91B (2024) Proceedings of the 36th Conference on Formal Power
Article #91, 12 pp. Series and Algebraic Combinatorics (Bochum)

Crystal Chute Moves on Pipe Dreams

Sarah Gold1, Elizabeth Milićević2, and Yuxuan Sun*3
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Abstract. Schubert polynomials represent a basis for the cohomology of the com-
plete flag variety and thus play a central role in geometry and combinatorics. In this
context, Schubert polynomials are generating functions over various combinatorial ob-
jects, such as rc-graphs or reduced pipe dreams. By restricting Bergeron and Billey’s
chute moves on rc-graphs, we define a Demazure crystal structure on the monomials
of a Schubert polynomial. As a consequence, we provide a method for decomposing
Schubert polynomials as sums of key polynomials, complementing related work of
Assaf and Schilling via reduced factorizations with cutoff, as well as Lenart’s coplactic
operators on biwords.
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1 Introduction

Schubert polynomials are fundamental objects which lie at the intersection of geometry,
representation theory, and algebraic combinatorics. By a classical theorem of Borel, the
cohomology of the manifold of complete flags in Cn with integer coefficients is canoni-
cally isomorphic to the quotient of Z[x1, . . . , xn] by the ideal generated by the symmetric
polynomials without constant term [5]. The geometry of the flag variety is best captured
by the cohomology classes of the Schubert varieties, which correspond to Schubert poly-
nomials under Borel’s isomorphism, generalizing the role of the Schur polynomials in
the cohomology of the Grassmannian. In addition to encoding geometric information
about the flag variety, individual Schubert polynomials also exhibit rich combinatorial
and representation theoretic structures, as developed in [16, 14, 21, 17, 1] and explored
further in the present work.

1.1 Schubert and key polynomials

Given any permutation w ∈ Sn, the Schubert polynomial Sw ∈ Z[x1, . . . , xn] can be cal-
culated recursively using a sequence of divided difference operators, by the original
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definition of Lascoux and Schützenberger [15], inspired by the work of Demazure [7]
and Bernstein–Gel′fand–Gel′fand [3]. Based on a conjecture of Stanley, the first combi-
natorial formula for Schubert polynomials was given by Billey, Jockusch, and Stanley
using the language of rc-graphs [4], with an alternate proof by Fomin and Stanley [9].
An equivalent combinatorial description for Schubert polynomials was later provided
by Fomin and Kirillov [10], rebranded by Knutson and Miller as reduced pipe dreams [13],
following the conventions of Bergeron and Billey [2]. Besides being attractive ways to vi-
sually represent Schubert polynomials, pipe dreams generalize to flag manifolds the role
of the semistandard Young tableaux for Grassmannians, while admitting generalizations
to other cohomological contexts.

Many combinatorial models for Schubert polynomials also involve a family of op-
erators, which permute the individual monomials. To highlight several examples most
closely related to this work, Bergeron and Billey define chute and ladder moves on rc-
graphs [2], the inspiration for which they attribute to Kohnert’s thesis [14]. Miller pro-
vides a mitosis algorithm which lists reduced pipe dreams recursively by induction on
the weak order on Sn [19]. Lenart develops operations on biwords which correspond to
the coplactic operators on tableaux [17]. Morse and Schilling define a family of operators
on reduced factorizations in [20], which restricts to an action on Schubert polynomials via
the semi-standard key tableaux of Assaf and Schilling [1].

All of the operators mentioned above encode useful combinatorics about Schubert
polynomials; however, some of them additionally carry representation-theoretic infor-
mation. The most natural approach to track the representation theory is often through
Kashiwara’s crystals [11], which are graphical models for the irreducible representations
of a complex semisimple Lie algebra. Lenart summarizes many results in [17] using the
language of crystal operators rooted in a pairing process on rc-graphs, though the details
are carried out via jeu de tacquin on biwords, most naturally associated with the com-
binatorics of semistandard Young tableaux. More explicitly, Assaf and Schilling prove
in [1, Theorem 5.11] that the set of all reduced factorizations for w ∈ Sn satisfying an
additional cutoff criterion decomposes as a union of Demazure crystals.

The decomposition of a combinatorial model for Schubert polynomials into a union
of Demazure crystals thus also yields a description of how Sw is expressed as a sum
of key polynomials κa, as in [1, Corollary 5.12]. Tableaux versions of such formulas
include the original of Lascoux and Schützenberger [16], a related result of Reiner and
Shimozono [21] on factorized row-frank words, and so on. The main goal of this paper is
to provide such a decomposition for Schubert polynomials as sums of key polynomials,
expressed in terms of reduced pipe dreams.



Crystal Chute Moves on Pipe Dreams 3

1.2 Main results

Inspired by the chute moves of [2] on rc-graphs, we develop a crystal structure on the
monomials of a Schubert polynomial, giving a method for decomposing Schubert poly-
nomials as sums of key polynomials, complementing the closely related works [1, 17].
Our crystal chute moves on reduced pipe dreams are either raising or lowering operators,
denoted ei and fi, respectively. If the raising operator ei(D) applied to a reduced pipe
dream D for the given permutation w ∈ Sn equals zero for all 1 ≤ i < n, then we say
D ∈ RP(w) is a highest weight pipe dream. We direct the reader to Section 2 for precise
definitions of all relevant terminology.

The highest weight pipe dreams naturally index the key polynomials in the decom-
position below, as they are in bijection with a pair consisting of a partition λD having n
parts and a permutation πD ∈ Sn, such that aD = πD(λD) for a unique composition aD.

Theorem 1. Given any w ∈ Sn, the Schubert polynomial may be expressed as

Sw(x1, . . . , xn) = ∑
D∈RP(w)

ei(D)=0, ∀1≤i<n

κaD(x1, . . . , xn),

where the composition aD = wt(D̃) for a diagram D̃ constructed from the highest weight pipe
dream D; see Algorithm 1 for details.

Figure 1 on the next page shows how S[21543] decomposes as the sum of three key
polynomials, indexed by the three pipe dreams with no incoming lowering edges, having
weights λD ∈ {(2, 1, 1, 0), (2, 2, 0, 0), (3, 1, 0, 0)} recording the number of crosses in each
row, with respective truncating permutations πD ∈ {s2s1s3, s2, s3s2} read from the edges.

2 A Crystal Structure on Pipe Dreams

In this section, we review the combinatorics of Schubert polynomials in the language of
reduced pipe dreams. We then define crystal chute moves by restricting the chute moves
of [2] on rc-graphs via a pairing process.

2.1 Schubert polynomials and pipe dreams

Reduced pipe dreams index the monomials of Schubert polynomials, as we review in
Theorem 2. Fix an n ∈ N and consider the n × n grid, indexed such that the box in row
i from the top and column j from the left is labeled by (i, j), as for matrix entries. A pipe
dream is a diagram D obtained by covering each box on the grid with one of two square
tiles: a cross or an elbow . Further, crosses are only permitted in boxes (i, j) such
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Figure 1: The Demazure crystal structure on reduced pipe dreams for w = [21543].
Crosses that will be moved by the lowering operators fi are in shown green.
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that i + j ≤ n, so we will typically only draw the portion of D which lies on or above the
main anti-diagonal.

By connecting the crosses and elbows on each tile in the unique possible way, as
shown in Figure 1, we can view the resulting diagram as a network of pipes moving
north and east, with water flowing in from the left of the grid and out at the top. The
water in each pipe enters and exits from a unique pair of row and column indices, so
that each pipe dream corresponds to a permutation on the set [n] = {1, . . . , n} as follows.
The one-line notation for a permutation w ∈ Sn records the action of w on [n] in the form
w = [w1 · · ·wn], where we write wi = w(i) for brevity. A diagram D is a pipe dream
for the permutation w = [w1 · · ·wn] if the pipe entering row i exits from column wi for all
i ∈ [n]. For example, each of the diagrams in Figure 2 below is a pipe dream for the
same permutation w = [21543] ∈ S5.
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Figure 2: Several reduced pipe dreams for w = [21543] ∈ S5.

A pipe dream is reduced if each pair of pipes crosses at most once, as in Figure 2.
Denote by RP(w) the set of all reduced pipe dreams for a given permutation w. We
denote by D+ the set of all boxes of D which are covered by a cross; note that D+

uniquely determines D. Provided that the pipe dream is reduced, [13, Lemma 1.4.5]
says that the number of crosses in D ∈ RP(w) equals the length of the permutation, or
the number of its inversions, given by |D+| = ℓ(w) = #{i < j | wi > wj}.

The weight of a pipe dream D ∈ RP(w), denoted by wt(D), is the weak composition
of ℓ(w) whose ith coordinate equals the number of crosses in row i of D. For example,
the three weight vectors corresponding to the pipe dreams from Figure 2 below are
(2, 1, 1, 0), (2, 2, 0, 0), and (3, 1, 0, 0) recorded from left to right, all of which happen to be
partitions in this example.

Schubert polynomials are generating functions over reduced pipe dreams, as illus-
trated by the following result, originally proved by Billey, Jockusch and Stanley [4], later
reproved by Fomin and Stanley [9], and recorded here in the language of pipe dreams.

Theorem 2 (Corollary 2.1.3 [13]). Let w ∈ Sn. Then

Sw(x1, . . . , xn) = ∑
D∈RP(w)

xwt(D). (2.1)

We use x to denote a monomial in the variables x1, . . . , xn. Given any vector v =
(v1, . . . , vn) ∈ Zn

≥0, the notation xv = xv1
1 · · · xvn

n is used throughout.
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2.2 Crystal chute moves

In this section, we describe a family of operators on the set RP(w) of reduced pipe
dreams for a given permutation, which we show in our main theorem produces a De-
mazure crystal structure on the monomials of Sw.

Definition 1. Given a reduced pipe dream D for a permutation in Sn, fix a row index i ∈ [n].
Denote the rightmost cross in row i by c. (Since crosses only occur in boxes (i, j) such that
i + j ≤ n, then D has no crosses in row n.) We define a pairing process on row 1 ≤ i < n of
D as follows:

1. Look for an unpaired cross c+ in row i + 1 such that c+ lies weakly to the right of c in D.
If there are multiple such c+, choose the leftmost c+.

(a) If such c+ exists, we say that c and c+ are paired.

(b) If no such c+ exists, we say that c is unpaired.

2. Denote by c′ the cross in row i which is both closest to c and lies to the left of c.

(a) If such c′ exists, we reset c := c′ and start again from step (1).

(b) If no such c′ exists, the pairing process on row i is complete.

We illustrate the pairing process on the righthand pipe dream from Figure 2 below.

Example 1. Fix i = 1 and identify c = (1, 4) as the rightmost cross in row 1. Since there are no
crosses in row 2 which lie weakly right of c, then c+ does not exist and c is unpaired in step (1b).
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Figure 3: The pairing process applied to row 1 of a reduced pipe dream. We color
paired crosses green and unpaired crosses red.

In step (2), we identify c′ = (1, 3) as the cross in row 1 closest to and left of the original
c = (1, 4). We thus return to step (1) applied to c = (1, 3). We identify c+ = (2, 3) as a cross
in row 2 which is weakly right of c = (1, 3), and so these crosses get paired in step (1a).

The only remaining cross c′ = (1, 1) is unpaired since all crosses in row 2 are now paired.
The pairing process is complete, having analyzed all crosses in row 1.

After running the pairing process on row i of D ∈ RP(w), we define an operator fi
on D which produces another element of RP(w) whenever it is nonzero.
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Definition 2. Let D ∈ RP(w) for w ∈ Sn. Fix an 1 ≤ i < n and run the pairing process on row
i of D. If all crosses in row i are paired, then set fi(D) = 0. Otherwise, denote by (i, j) ∈ D+

the leftmost unpaired cross in row i.
If (i, k) ∈ D+ for all 1 ≤ k ≤ j, then set fi(D) = 0. Otherwise, define m ∈ N such that:

(a) (i, j − m), (i + 1, j − m) /∈ D+ and

(b) (i, j − k), (i + 1, j − k) ∈ D+ for all 1 ≤ k < m.

Define a new diagram fi(D) by

fi(D)+ = {D+\(i, j)} ∪ {(i + 1, j − m)}.

The family of operators fi for 1 ≤ i < n are called (lowering) crystal chute moves.

In words, the crystal chute move fi exchanges the leftmost unpaired cross at (i, j) and
the elbow at (i + 1, j − m), where m is chosen such that the rectangle strictly between
this pair of tiles is filled by crosses.

We now illustrate how to apply the crystal chute moves on a reduced pipe dream.

Example 2. Consider the sequence shown in Figure 4, in which we instead begin with the
lefthand pipe dream D for w = [21543] from Figure 2. If we run the pairing process on row
1, the leftmost unpaired cross is (1, 4) ∈ D+. Properties (a) and (b) hold for m = 1, and the
corresponding rectangle of crosses between (1, 4) ∈ D+ and the elbow at (2, 3) is empty in this
case. To apply f1, the red cross in (1, 4) moves to the blue elbow in position (2, 3), resulting in
the middle diagram in Figure 4.

1 2 3 4 5
1
2
3
4
5

f1−→

1 2 3 4 5
1
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3
4
5

f2−→

1 2 3 4 5
1
2
3
4
5

Figure 4: Applying a sequence of crystal chute moves to a reduced pipe dream.

Running the pairing process next on row 2 of the middle pipe dream, (2, 3) is the leftmost
unpaired cross, and m = 2, corresponding to the tile of paired crosses in rows 2 and 3 which are
preserved under applying f2. Here instead, the red cross at (2, 3) jumps over this rectangle of
crosses to the blue elbow in position (3, 1), resulting in the third diagram in Figure 4.

We now define a second family of operators ei to be precisely the inverse of the crystal
chute moves from Definition 2.
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Definition 3. Let D ∈ RP(w) for w ∈ Sn. Fix an 1 ≤ i < n and run the pairing process
on row i of D. If all crosses in row i + 1 are paired, then set ei(D) = 0. Otherwise, denote by
(i + 1, ℓ) ∈ D+ the rightmost unpaired cross in row i + 1.

Let n > ℓ be minimal such that (i + 1, n) /∈ D+. Define a new diagram ei(D) by

ei(D)+ = {D+\(i + 1, ℓ)} ∪ {(i, n)}.

The family of operators ei for 1 ≤ i < n are called (raising) crystal chute moves.

We now have well-defined raising and lowering operators on reduced pipe dreams.

Proposition 1. The raising crystal chute move ei : RP(w) → RP(w) ∪ {0} is well-defined for
all 1 ≤ i < n, satisfying wt(ei(D)) = wt(D) + αi for any D ∈ RP(w). Moreover, the raising
and lowering crystal chute moves are mutually inverse.

The pipe dreams D on which ei(D) = 0 for all 1 ≤ i < n play a distinguished role in
the statement of Theorem 3 below, so we highlight them here.

Definition 4. If ei(D) = 0 for all 1 ≤ i < n, then D is a highest weight pipe dream.

2.3 Demazure crystals and the main theorem

We refer the reader to [6] for more background on crystals. Given a partition λ with n
parts, the type An−1 crystal of highest weight λ is denoted by B(λ), and the character of
the crystal B(λ) is the Schur polynomial sλ(x1, . . . , xn).

Demazure crystals are subsets of B(λ) truncated by a permutation which restricts the
set of raising and lowering operators. More precisely, for any subset X ⊆ B(λ) and any
index 1 ≤ i < n, we define Di in terms of lowering operators as

Di(X) = {b ∈ B(λ) | b ∈ f k
i (X) for some k ≥ 0}.

Now given any π ∈ Sn, write π = si1 · · · sip as a product of simple transpositions si =
(i, i + 1) where the expression for π is reduced, meaning that p = ℓ(π) is minimal. If uλ

denotes the highest weight element of B(λ), the Demazure crystal associated to the pair
(λ, π) is defined by

Bπ(λ) = Di1 · · ·Dip(uλ).

The character of the Demazure crystal Bπ(λ) generalizes the Demazure characters of
[8], as conjectured by Littelmann [18] and proved by Kashiwara [12]. Moreover, the
character of the Demazure crystal Bπ(λ) is the key polynomial κa(x1, . . . , xn) indexed by
the composition a such that a = π(λ).

Our main theorem says that the set of reduced pipe dreams for a permutation admits
a Demazure crystal structure determined by the crystal chute moves from Section 2.2.
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Theorem 3. Given any w ∈ Sn, the operators ei and fi for 1 ≤ i < n define a type An−1
Demazure crystal structure on RP(w). That is,

RP(w) ∼=
⋃

D∈RP(w)
ei(D)=0, ∀1≤i<n

BπD(wt(D)),

where the truncating permutation πD is the shortest permutation such that wt(D̃) = πD(wt(D)),
for a diagram D̃ constructed algorithmically from the highest weight pipe dream D; see Theorem 4.

Theorem 3 is the pipe dream analog of [1, Theorem 5.11], phrased there in terms of
reduced factorizations for w meeting a cutoff condition. Refer to Figure 1 in the intro-
duction to see how RP([21543]) decomposes into the union of three Demazure crystals.

3 Permutation Indexing the Demazure Crystal

This section explains the algorithm for identifying the truncating permutation from a
highest weight pipe dream, equivalently the composition defining the corresponding
key polynomial. We begin by describing how to obtain a new diagram D̃ from any
highest weight pipe dream D.

Algorithm 1. Let D be a highest weight pipe dream.

1. For each cross in row i, shift it to the right by i − 1.

2. For each row, beginning in the lowest row, move the leftmost cross down to the row such
that its row and column index match. Fix these crosses.

3. Set ℓ = 2.

(a) Beginning at the bottom row containing unfixed crosses, consider the leftmost unfixed
cross. Move that cross down to the lowest possible row, remaining in its current
column, such that:

i. The cross may not move through other crosses;
ii. The cross is the ℓth cross from the left in its new row; and

iii. The cross does not have any previously fixed crosses to its right in the new row.

(b) Fix this moved cross.

(c) Repeat steps (a) and (b) untill all rows with unfixed crosses have been considered.

4. Increment ℓ by 1, and repeat step (3).

Once all crosses are fixed, the algorithm terminates. Denote the resulting diagram by D̃.
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We illustrate Algorithm 1 on an example.

Example 3. Consider the permutation w = [4726315] ∈ S7. One of its highest weight pipe
dreams D is depicted in Figure 5. The result after applying steps (1) and (2) of Algorithm 1 to D
is in Figure 6, with fixed crosses marked in red.
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Figure 5: A highest weight pipe
dream D for w = [4726315] ∈ S7.
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Figure 6: The result of applying steps
(1) and (2) of Algorithm 1 to D.

We now move to the iterative step (3). Set ℓ = 2. We begin on the lowest row with an unfixed
cross, that being row 3. We move the leftmost unfixed cross in this row, that being the cross at
(3, 5), down in its column to a position that meets criteria (i) through (iii). We first observe that
there is a cross at (5, 5), meaning that we are unable to move our cross to row 5 or any row below
it. Our only option is to move this cross to row 4. Observe that a cross at (4, 5) would be the
second cross in its row. Thus, we move the cross at (3, 5) to (4, 5) and fix it there.

The two crosses at (2, 3) and (1, 2) cannot move lower without violating (i). These two crosses
are thus also fixed, completing the round of moves for ℓ = 2. At the end of this round, we obtain
the diagram shown in Figure 7. We then increment ℓ to 3, and repeat the process. We omit the
details, but the final result D̃ is shown in Figure 8.

Finally, the truncating permutation πD is obtained from the diagram D̃ as follows.

Theorem 4. Let D ∈ RP(w) be a highest weight pipe dream for w ∈ Sn. Then πD ∈ Sn from
Theorem 3 is the unique shortest permutation such that wt(D̃) = πD(wt(D)). In addition,
the composition aD = wt(D̃) from Theorem 1 indexes the key polynomial corresponding to
(πD, wt(D)).

We conclude by extracting the truncating permutation πD and the composition aD
from Example 3 via Theorem 4.
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Figure 7: The diagram after complet-
ing the first iteration of step (3).
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Figure 8: The diagram D̃ after com-
pleting Algorithm 1.

Example 4. For the highest weight pipe dream D in Example 3, we have wt(D) = (5, 3, 3, 1, 1, 0).
After applying Algorithm 1, we obtained the diagram D̃ in Figure 8 such that aD = wt(D̃) =
(3, 5, 1, 3, 1, 0). The shortest permutation πD such that aD = πD(wt(D)) equals πD = s1s3,
since (3, 5, 1, 3, 1, 0) = s1s3(5, 3, 3, 1, 1, 0).
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