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Abstract. A triangular partition is a partition whose Ferrers diagram can be separated
from its complement (as a subset of N2) by a straight line. Having their origins in
number theory and computer vision, triangular partitions have been studied from a
combinatorial perspective by Corteel et al. under the name plane corner cuts, and more
recently by Bergeron and Mazin in the context of algebraic combinatorics. Here we
derive new enumerative, geometric, and algorithmic properties of such partitions.

We give a new characterization of triangular partitions and the cells that can be added
or removed while preserving the triangular condition, and use it to describe the Möbius
function of the restriction of Young’s lattice to triangular partitions. We obtain a for-
mula for the number of triangular partitions whose Young diagram fits inside a square,
deriving a new proof of Lipatov’s enumeration theorem for balanced words. Finally,
we present an algorithm that generates all the triangular partitions of a given size,
which is significantly more efficient than previous ones and allows us to compute the
number of triangular partitions of size up to 105.
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1 Introduction

An integer partition is said to be triangular if its Ferrers diagram can be separated from
its complement by a straight line. Triangular partitions and their higher-dimensional
generalizations have been studied from several perspectives during the last five decades.
They first appeared in the context of combinatorial number theory [5], where they were
called almost linear sequences. Later, the closely related notion of digital straight lines
became relevant in the field of computer vision [6]. From a combinatorial perspective,
triangular partitions were first studied by Onn and Sturmfels [12], who defined them
in any dimension and called them corner cuts. Soon after, Corteel et al. [7] found an
expression for the generating function for the number of plane corner cuts.
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Renewed interest in triangular partitions has recently come from algebraic combi-
natorics; specifically, from the study of generalizations of the shuffle theorem and, more
broadly, of the ubiquitous connections between Dyck paths, parking functions, diagonal
coinvariant spaces, and Macdonald polynomials. In generalizing Dyck paths to Fuss-
Catalan paths, then rational Dyck paths, and then rectangular Dyck paths, a natural
next step is to consider lattice paths (with unit south and east steps) that stay weakly
below the line segment from (0, s) to (r, 0), where r and s are any positive real numbers.
These paths arise in recent work of Blasiak et al. [4] generalizing the shuffle theorem.
Motivated by this result, Bergeron and Mazin [2] coined the terms triangular partitions,
triangular Dyck paths, and triangular parking functions, and studied some of their combi-
natorial and algebraic properties.

In this abstract we obtain further enumerative, geometric, poset-theoretic, and algo-
rithmic properties of triangular partitions. In Section 2 we give basic definitions and
summarize some of the work from [7, 2]. In Section 3 we give a simple alternative char-
acterization of triangular partitions, as those for which the convex hull of the Ferrers
diagram and that of its complement (as a subset of N2) have an empty intersection. We
also characterize which cells can be added to or removed from the Young diagram while
preserving triangularity.

In Section 4 we study the restriction of Young’s lattice to triangular partitions. It was
shown in [2] that this poset is a lattice. Here we completely describe its Möbius function,
and we provide an explicit construction of the join and meet of two triangular partitions.

In Section 5, we introduce a new encoding of triangular partitions in terms of bal-
anced words, and use it to implement an algorithm which computes the number of
triangular partitions of each size up to N in time O(N5/2). This allows us to produce the
first 105 terms of this sequence, compared to the 39 terms that were known previously.

In Section 6, refining the approach from [7], we obtain generating functions for tri-
angular partitions with a given number of removable and addable cells. In Section 7,
we provide a formula for the number of triangular partitions whose Young diagram fits
inside a square (or equivalently, inside a staircase), which involves Euler’s totient func-
tion. As a byproduct, we obtain a new combinatorial proof of a formula of Lipatov [8]
for the number of balanced words.

Due to space constraints, proofs are omitted from this extended abstract.

2 Background

A partition λ is a weakly decreasing sequence of positive integers, often called the parts
of λ. We will write λ = (λ1, λ2, . . . , λk), or λ = λ1λ2 . . . λk when there is no confusion.
We call |λ| = λ1 + λ2 + · · ·+ λk the size of λ. If |λ| = n, we say that λ is a partition of n.

Let N denote the set of positive integers. The Ferrers diagram of λ is the set of lattice
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points
{(a, b) ∈ N2 | 1 ≤ b ≤ k, 1 ≤ a ≤ λb}.

The Young diagram of λ is the set of unit squares (called cells) whose north-east corners
are the points in the Ferrers diagram. We identify each cell with its north-east corner, so
we also use the term cell to refer to points in the Ferrers diagram. In particular, we say
that a cell lies above, below or on a line when the north-east corner does. We will often
identify λ with its Ferrers and Young diagrams, and use notation such as c = (a, b) ∈ λ.

For a partition λ = λ1λ2 . . . λk, we call λ1 its width, and k its height. Let σk = (k, k −
1, . . . , 2, 1) denote the staircase partition of height k. The conjugate of λ, obtained by
reflecting its Ferrers diagram along the diagonal y = x, will be denoted by λ′. Identifying
λ with its Ferrers diagram, we define its complement to be the set N2 \ λ.

Definition 1. A partition τ = τ1τ2 . . . τk is triangular if there exist positive real numbers r
and s such that

τj = ⌊r − jr/s⌋ ,

for 1 ≤ j ≤ k, and k = ⌊s − s/r⌋.

In other words, τ is triangular if its Ferrers diagram consists of the points in N2 that
lie on or below the line that passes through (0, s) and (r, 0) for some r, s ∈ R>0. See
Figure 1 for an example. This line is called a cutting line of τ. Unlike in the definition
given in [2], here we do not allow τ to have parts equal to 0, hence the condition on k.
We often use τ to denote a triangular partition.

s

r

min(τ)

dif(τ) + 1

dif(τ) + 1

dif(τ)

dif(τ) + 1

1
1

0
1

Figure 1: Left: A cutting line for the triangular partition (8, 6, 5, 3, 1). Right: Applying
the bijection from Theorem 19 to τ = (12, 9, 7, 4, 1) gives χ(τ) = (1, 2, 1011).

Denote by ∆(n) the set of triangular partitions of n, and by ∆ =
⋃

n≥0 ∆(n) the set of
all triangular partitions. The following two results are due to Corteel et al. [7].
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Theorem 2 ([7]). The generating function for triangular partitions can be expressed as

G∆(z) = ∑
n≥0

|∆(n)|zn =
1

1 − z
+ ∑

gcd(a,b)=1
∑

0≤j<a
0≤i<b

∑
1≤m<k

zN∆(a,b,k,m,i,j),

where

N∆(a, b, k, m, i, j) = (k − 1)
(
(a + 1)(b + 1)

2
− 1

)
+

(
k − 1

2

)
ab + ij (2.1)

+ i(k − 1)a + j(k − 1)b + T(a, b, j) + T(b, a, i) + m,

and T(a, b, j) = ∑
j
r=1(⌊rb/a⌋+ 1).

Theorem 3 ([7]). There exist positive constants c and c′ such that, for all n > 1,

cn log n < |∆(n)| < c′n log n.

Let λ = λ1 . . . λk be a partition, and let c = (i, j) be a cell of its Young diagram.
Define the arm length and the leg length of c to be a(c) = λj − i and ℓ(c) = λ′

i − j, that is,
the number of cells to the right of c in its row, and above c in its column, respectively.
Bergeron and Mazin [2] give the following characterization of triangular partitions.

Lemma 4 ([2, Lemma 1.2]). A partition λ is triangular if and only if t−λ < t+λ , where

t−λ = max
c∈λ

ℓ(c)
a(c) + ℓ(c) + 1

, and t+λ = min
c∈λ

ℓ(c) + 1
a(c) + ℓ(c) + 1

.

Definition 5. A cell of τ ∈ ∆ is removable if removing it from τ yields a triangular
partition. A cell of the complement N2 \ τ is addable if adding it to τ yields a triangular
partition.

Lemma 6 ([2, Lemma 4.5]). Every nonempty triangular partition has either one removable cell
and two addable cells, two removable cells and one addable cell, or two removable cells and two
addable cells.

Let Y∆ be the poset of triangular partitions ordered by containment of their Young
diagrams; equivalently, the restriction of Young’s lattice to the subset of triangular parti-
tions. The covering relations in Y∆ can be described as follows.

Lemma 7 ([2, Lemma 4.2]). Let τ, ν ∈ Y∆ such that τ < ν. Then, τ ⋖ ν if and only if τ

is obtained from ν by removing exactly one cell. In particular, Y∆ is ranked by the size of the
partitions.

Lemma 8 ([2, Corollary 4.1, Lemma 4.4]). The poset Y∆ has a planar Hasse diagram, and it
is a lattice.
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3 Characterizations of triangular partitions

Bergeron and Mazin’s [2] characterization of triangular partitions, given in Lemma 4
above, requires computing some quotients of arm and leg lengths for all the cells in the
partition. In this section, we introduce an alternative and arguably simpler characteriza-
tion of triangular partitions in terms of convex hulls, along with various ways to identify
removable and addable cells. We then use these to describe an algorithm which deter-
mines if an integer partition is triangular and finds its removable and addable cells. The
convex hull of a set S ⊆ N2 will be denoted by Conv(S).

Proposition 9. A partition λ is triangular if and only if Conv(λ) ∩ Conv(N2 \ λ) = ∅.

We will use the term vertex in the sense of a 0-dimensional face of a polygon; in
particular, Conv(τ) may have lattice points in its boundary that are not vertices.

Proposition 10. Two cells in τ ∈ ∆ are removable if and only if they are consecutive vertices
of Conv(τ) and the line passing through them does not intersect Conv(N2 \ τ). Similarly, two
cells in N \ τ are addable if and only if they are consecutive vertices of Conv(N2 \ τ) and the
line passing through them does not intersect Conv(τ).

An immediate consequence is that a triangular partition can have no more than two
removable cells and no more than two addable cells, as we knew from Lemma 6.

Proposition 11. A cell c = (a, b) ̸= (1, 1) in τ ∈ ∆ is its only removable cell if and only if it is
a vertex of Conv(τ) and both of the following hold:

• if a > 1, the line containing the edge of Conv(τ) adjacent to c from the left intersects
Conv(N2 \ τ) to the right of c;

• if b > 1, the line containing the edge of Conv(τ) adjacent to c from below intersects
Conv(N2 \ τ) above c.

The characterization for a single addable cell is analogous.

The above characterizations can be used to describe an algorithm that determines
whether a partition λ of n into k parts is triangular, and if it is, it finds its removable and
addable cells. The algorithm first finds the vertices of Conv(λ) and Conv(N2 \ λ), and
then it searches for a segment of the boundary of one of these convex hulls such that the
line containing it does not intersect the opposite convex hull. By Proposition 10, such
a segment joins two removable or addable cells. This algorithm has complexity O(k)
for the initialization and O(min{k,

√
n}) for the rest of its steps, whereas an algorithm

based on Bergeron and Mazin’s Lemma 4 would take time O(n).
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4 The triangular Young poset

Bergeron and Mazin [2] introduced the poset Y∆ of triangular partitions ordered by con-
tainment of their Young diagrams. They showed that it has a planar Hasse diagram, and
deduced from this property that Y∆ is a lattice, and it is ranked by the size of each par-
tition. Here we describe the Möbius function of Y∆, and we give explicit constructions
for the meet and the join of any two elements.

Our first result confirms Bergeron’s conjecture (personal communication, 2022) that
the Möbius function only takes values in {−1, 0, 1}.

Theorem 12. Let τ, ν ∈ Y∆ such that τ ≤ ν. The value of the Möbius function is:

µ(τ, ν) =


1 if either τ = ν or there exist ζ1 ̸= ζ2 such that ν = ζ1 ∨ ζ2 and τ ⋖ ζ1, ζ2,
−1 if τ ⋖ ν,
0 otherwise.

It is shown in [2] that the faces of the Hasse diagram of Y∆ are polygons with an
even number of sides. We can interpret Theorem 12 as stating that, if τ < ν and ν does
not cover τ, then µ(τ, ν) equals 1 if [τ, ν] is one of the polygonal faces, and 0 otherwise.

The next result explicitly characterizes the join and meet of two elements of Y∆. A
similar formula works for the join and the meet of any number of elements.

Proposition 13. The join and the meet of τ, ν ∈ Y∆ are given by

τ ∨ ν = N2 ∩ Conv(τ ∪ ν) and τ ∧ ν = N2 \
(

N2 ∩ Conv
(
N2 \ (τ ∩ ν)

))
.

5 Bijections to balanced words and efficient generation

In this section we present two different interpretations of triangular partitions in terms
of factors of Sturmian words. The first interpretation, which is hinted at in [2], is quite
natural, and it will allow us to prove some enumeration formulas in Section 7. The
second interpretation encodes families of triangular partitions by one single balanced
word, along with two other parameters, and it will be used in Section 5.4 to implement
efficient algorithms to count triangular partitions by their size.

5.1 Balanced words

Recall that a factor of a word is a consecutive subword. An infinite binary word s is
Sturmian if, for every n ≥ 1, the number of factors of s of length n equals n+ 1. Sturmian
words have applications in combinatorics, number theory, and dynamical systems; see
[9, Chapter 2] for a thorough study.
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It is known that a finite binary word w = w1 . . . wℓ is a factor of some Sturmian word
if and only if it is balanced, that is, for any h ≤ ℓ and i, j ≤ ℓ− h + 1, we have∣∣(wi + wi+1 + · · ·+ wi+k−1)− (wj + wj+1 + · · ·+ wj+k−1)

∣∣ ≤ 1.

This condition says that for any two factors of w of the same length, the number of ones
in these factors differs by at most 1. We denote by B the set of all balanced words, and
by Bℓ the set of those of length ℓ.

The following enumeration formula for balanced words is due to Lipatov [8]. We use
φ to denote Euler’s totient function.

Theorem 14 ([8]). The number of balanced words of length ℓ is

|Bℓ| = 1 +
ℓ

∑
i=1

(ℓ− i + 1)φ(i).

5.2 First Sturmian interpretation

Definition 15. A triangular partition is wide (respectively tall) if it admits a cutting line
x/r + y/s = 1 with r > s (respectively r < s).

It can be shown that every triangular partition must be wide, tall, or both. Addition-
ally, a triangular partition τ is wide if and only if its conjugate τ′ is tall.

Lemma 16. For any triangular partition τ = τ1 . . . τk, we have

τ is wide ⇔ τ1 ≥ k ⇔ the parts of τ are distinct,

τ is wide and tall ⇔ τ1 = k ⇔ τ = σk.

Given a wide triangular partition τ = τ1 . . . τk, define the binary word

ω(τ) = 10τ1−τ2−110τ2−τ3−1 . . . 10τk−1−τk−110τk−1. (5.1)

The fact that all the parts of τ are distinct guarantees that the exponents are nonnegative.
For example, ω(86531) = 10110101.

Proposition 17. For every k, ℓ ≥ 1, the map ω is a bijection between the set of wide triangular
partitions with k parts and first part equal to ℓ, and the set of balanced words of length ℓ with k
ones that start with 1.
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5.3 Second Sturmian interpretation

Our second encoding of triangular partitions using balanced words appears to be new.
Let ϵ denote the empty partition, and let W be the set of wide triangular partitions with
at least two parts. Let B0 denote the set of balanced words that contain at least one 0.

First we describe the possible sets that can be obtained by taking the differences of
consecutive parts in a wide triangular partition. For τ = τ1 . . . τk ∈ W , define

D(τ) = {τ1 − τ2, τ2 − τ3, . . . , τk−1 − τk}.

Lemma 18. For any τ = τ1 . . . τk ∈ W , either D(τ) = {d} or D(τ) = {d, d + 1} for some
d ≥ 1 such that τk ≤ d + 1.

Define also min(τ) = τk, dif(τ) = minD(τ), and wrd(τ) = w1 . . . wk−1 where, for
i ∈ [k − 1], we let wi = τi − τi+1 − dif(τ). Lemma 18 guarantees that wi ∈ {0, 1} for all i.

Theorem 19. The map χ = (min, dif, wrd) is a bijection between W and the set

T = {(m, d, w) ∈ N × N ×B0 | m ≤ d + 1; w1 ∈ B0 if m = d + 1}.

Its inverse is given by the map

ξ(m, d, w1 . . . wk−1) = τ1 . . . τk, where τi = m +
k−1

∑
j=i

(wj + d) for i ∈ [k].

Additionally, given τ ∈ W with image χ(τ) = (m, d, w), its number of parts equals the length
of w plus one, and its size is

|τ| = km +

(
k
2

)
d +

k−1

∑
i=1

iwi. (5.2)

5.4 Efficient generation

At the time of writing this abstract, the entry of the OEIS [11, A352882] for the number
triangular partitions of n only includes values for n ≤ 39. These are the terms that
appear in [7], where they were obtained using the generating function in Theorem 2.
Computing more terms using this generating function is impractical for large n.

Theorem 19 can be used to implement a much more efficient algorithm that can
quickly compute the first 105 terms of the sequence. On input N, our algorithm to
compute |∆(n)| for 1 ≤ n ≤ N performs a depth first search through the tree of balanced
words of length up to ⌊

√
2N⌋. The parent of a nonempty balanced word in this tree is the

balanced word obtained by removing its last letter. For each w ∈ Bℓ, our algorithm can
quickly determine whether w0 and w1 are balanced by keeping a vector that records,
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for each h ≤ ℓ, whether all the factors of length h have the same number of ones, or
otherwise, whether the rightmost factor of w has more or less ones than other factors.

For each w ∈ Bℓ with ℓ ≤
√

2N, the algorithm finds all the values m, d ∈ N such
that (m, d, w) ∈ T , as defined in Theorem 19, and such that the size function given in
equation (5.2) is at most N. Each triplet (m, d, w) accounts for two triangular partitions,
namely τ = χ(m, d, w) and its conjugate, except when w = 0k−1 (for some k ≥ 2) and
m = d, in which case it accounts for only one partition, the staircase σk.

A C++ implementation of this algorithm is available at [1]. In a standard laptop
computer, this algorithm yields the first 103 terms of the sequence |∆(n)| in under one
second, the first 104 terms in one minute, and the first 105 terms in about one hour.

Proposition 20. The above algorithm finds |∆(n)| for 1 ≤ n ≤ N in time O(N5/2). Addition-
ally, it can be modified to generate all (resp., all wide) triangular partitions of size at most N in
time O(N3 log N) (resp., O(N5/2 log N)).

The first 105 terms of the sequence |∆(n)|/(n log n) are plotted on the left of Figure 2.
The plot suggests that, for large n, this sequence oscillates between two decreasing func-
tions that differ by about 0.05.

Figure 2: Left: The first 105 terms of the sequence |∆(n)|/(n log n). Right: Plot of
|∆2(n)| and |∆1(n)| for 1 ≤ n ≤ 100.

6 Generating functions for subsets of triangular partitions

Let ∆1 and ∆2 denote the subsets of triangular partitions with one removable cell and
with two removable cells, respectively. Let ∆1 and ∆2 denote the subsets of triangular
partitions with one addable cell and with two addable cells, respectively. Let ∆2

2 = ∆2 ∩
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∆2. Denote partitions of size n in each subset by ∆1(n), ∆2(n), ∆1(n), ∆2(n) and ∆2
2(n).

In this section we obtain generating functions for each of these sets, refining Theorem 2.
In our following result, N∆(a, b, k, m, i, j) is the function defined in equation (2.1).

Proposition 21. The generating function for triangular partitions with two removable cells can
be expressed as

G∆2(z) = ∑
n≥0

|∆2(n)|zn = ∑
gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
k≥2

zN∆(a,b,k,k,i,j).

Proposition 22. The generating functions for partitions in ∆1, ∆2, ∆1, ∆2
2 can be written in

terms of G∆(z) (given in Theorem 2) and G∆2(z) (given in Proposition 21) as follows:

G∆1(z) = G∆(z)− G∆2(z)− 1, G∆2(z) =
1 − z

z
G∆(z) +

1
z

G∆2(z)−
1
z

,

G∆1(z) =
2z − 1

z
G∆(z)−

1
z

G∆2(z) +
1
z

, G∆2
2
(z) =

1 − 2z
z

G∆(z) +
1 + z

z
G∆2(z)−

1
z

.

We can use the expression for G∆2 given in Proposition 21 to write an algorithm to
find |∆2(n)|. We have computed the first 100 terms of this sequence using a MATLAB
implementation of this algorithm, which is available at [1]. The initial terms of the
sequences |∆1(n)| and |∆2(n)|, plotted on the right of Figure 2, suggest that |∆2(n)| >
|∆1(n)| for all n ≥ 9, although we do not have a proof of this. It is interesting to note that
both the local maxima of |∆1(n)| and the local minima of |∆2(n)| seem to occur precisely
when n ≡ 2 (mod 3). On the other hand, |∆(n)| does not exhibit such periodic extrema.

7 Triangular subpartitions and a combinatorial proof of
Lipatov’s formula for balanced words

For τ ∈ ∆, let I(τ) = |{ν ∈ ∆ : ν ⊆ τ}| denote the number of triangular subpartitions of
τ. We start by giving a recurrence for this number. In some particular cases, we will be
able to obtain explicit formulas for I(τ). In this section we will also derive a new proof
of Theorem 14.

Let c− and c+ be the removable cells of τ. Following [2], denote by τ◦ the triangular
partition that is obtained from τ by removing all the cells in the segment joining c−

and c+. If τ has only one removable cell, then c− = c+, and τ◦ is simply the partition
obtained by removing this cell.

Lemma 23. For any τ ∈ ∆(n) with n ≥ 1,

I(τ) = I(τ \ {c−}) + I(τ \ {c+})− I(τ◦) + 1.
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This recurrence relation, along with the base case I(ϵ) = 1, allows us to compute I(τ)
for any τ ∈ ∆, although not very efficiently. For example, for the staircase, the first few
terms of the sequence I(σℓ) for ℓ ≥ 0 are 1, 2, 5, 12, 25, 48, 83, . . . .

We use the terms height and width of a partition τ to refer to the number of parts
and the largest part of τ, respectively. In order to find explicit formulas for I(τ) in some
cases, let us consider the closely related problem of counting triangular partitions whose
width is at most ℓ and whose height is at most h; equivalently, those whose Young
diagram fits inside an h × ℓ rectangle. We denote by ∆h×ℓ the set of such partitions.

Lemma 24. Let h, ℓ ≥ 1, and let ν ∈ ∆. Then ν ∈ ∆h×ℓ if and only if ν ⊆ τ, where τ = τ1 . . . τh

is the triangular partition given by τi =
⌊
ℓ+ 1 − ℓ(i−1)+1

h

⌋
, for 1 ≤ i ≤ h.

Our next goal is to give a formula for I(σℓ), which, by Lemma 24, equals the number
of triangular partitions that fit inside an ℓ× ℓ square, that is,

∣∣∆ℓ×ℓ
∣∣. The proof of the

following lemma uses the bijection ω from equation (5.1).

Lemma 25. For ℓ ≥ 1, the number of triangular partitions of width exactly ℓ and height at most
ℓ is |Bℓ|/2, and ∣∣∣∆ℓ×ℓ \ ∆(ℓ−1)×(ℓ−1)

∣∣∣ = I(σℓ)− I(σℓ−1) = |Bℓ| − 1.

Combining the above lemma with Lipatov’s enumeration formula for balanced words
(Theorem 14), we deduce the following result.

Theorem 26. For any ℓ ≥ 0,∣∣∣∆ℓ×ℓ
∣∣∣ = I(σℓ) = 1 +

ℓ

∑
i=1

(
ℓ− i + 2

2

)
φ(i).

Unfortunately, the proof of Theorem 26 that relies on Lipatov’s formula does not give
a conceptual understanding of why the terms (ℓ−i+2

2 ) and φ(i) appear.
Instead, we have been able to find a direct, combinatorial proof of Theorem 26 that

explains why these terms appear. While this proof does not fit in this extended abstract,
we briefly describe its main ideas. First we give a bijection ϕ between triangular parti-
tions (except those that have all parts equal to one) and the set {(a, b, d, e) ∈ N4 | d <
a, gcd(d, e) = 1}, and characterize the set ϕ(∆ℓ×ℓ). Then we show that, for fixed d < e
with gcd(d, e) = 1, by combining the points (a, b) for which (a, b, d, e) ∈ ϕ(∆ℓ×ℓ), with
(a certain linear transformation of) the points (a, b) for which (a, b, e, e − d) ∈ ϕ(∆ℓ×ℓ),
one obtains precisely the set of lattice points in a certain triangle, which are counted by
(ℓ−e+2

2 ). Summing over all pairs d < e with gcd(d, e) = 1 gives our formula for
∣∣∆ℓ×ℓ

∣∣.
As an added benefit, our argument also provides a new proof of Lipatov’s formula

(Theorem 14), which is fundamentally different from the existing proofs that have ap-
peared over the years, all of which are quite technical; see e.g. [10, 3].
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Similar formulas for the number of triangular subpartitions in other rectangles can
be derived from Theorem 26.

Corollary 27. For ℓ ≥ 2,∣∣∣∆ℓ×(ℓ−1)
∣∣∣ = 1

2
+

ℓ

∑
i=1

(ℓ− i + 1)2

2
φ(i),

∣∣∣∆ℓ×(ℓ−2)
∣∣∣ = 1− ℓ+

ℓ

∑
i=1

(ℓ− i + 1)(ℓ− i) + 1
2

φ(i).
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