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Abstract. Let Rn “ Qrx1, x2, . . . , xns be the ring of polynomials in n variables and con-
sider the ideal xQSym`

n y Ď Rn generated by quasisymmetric polynomials without con-
stant term. It was shown by Aval–Bergeron–Bergeron that dim

`

Rn
L

xQSym`
n y

˘

“ Cn

the nth Catalan number. We explain here this phenomenon by defining a set of permu-
tations QSVn with the following properties: first, QSVn is a basis of the Temperley–Lieb
algebra TLnp2q, and second, when considering QSVn as a collection of points in Qn,
the top-degree homogeneous component of the vanishing ideal IpQSVnq is xQSym`

n y.
Our construction has a few byproducts which are independently noteworthy.

Résumé. Soit Rn “ Qrx1, x2, . . . , xns l’anneau des polynômes en n variables, et consid-
érez l’idéal xQSym`

n y Ď Rn engendré par les polynômes quasisymétriques sans terme
constant. Il a été démontré par Ava–Bergeron–Bergeron que dim

`

Rn
L

xQSym`
n y

˘

“ Cn

le n-ième nombre de Catalan. Nous expliquons ici ce phénomène en construisant un
ensemble de permutations QSVn ayant les propriétés suivantes: premièrement, QSVn
est une base de l’algèbre de Temperley–Lieb TLnp2q, et deuxièmement, en consid-
érant QSVn comme une collection de points dans Qn, la composante homogène de
degré supérieur de l’idéal IpQSVnq est xQSym`

n y. Notre construction a quelques sous-
produits qui sont indépendamment dignes d’intérêt.
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1 Introduction

Quasisymmetric functions originate in the work of Stanley [18], where they appear as
enumeration series for P-partitions. Later, Gessel [8] gave a more algebraic treatment
of the ring QSym spanned by all quasisymmetric functions, establishing a beautiful
analogy with the classical ring of symmetric functions Sym. The importance of QSym
has continued to increase: [1] established QSym as a universal setting for enumerative
combinatorial invariants, and in recent years quasisymmetric functions have been at the
center of a number of research programs (many examples can be found in [11, 15, 16]
and references therein).
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In this abstract, based on the paper [4], we explore the striking similarity between
quasisymmetric functions and the invariant theory of finite reflection groups. Cheval-
ley’s theorem states that each finite reflection group W acts naturally on a polynomial
ring R, and the quotient of R by the ideal xRW

` y generated by positive degree invariants
is isomorphic to the regular module of W; see [13, Chapter 3]. Hivert [12] shows that
the quasisymmetric polynomials QSymn in Rn “ Qrx1, . . . , xns are likewise the invari-
ants of an action of the Temperley–Lieb algebra TLnp2q on Rn. Writing xQSym`

n y for
the ideal generated by the positive degree quasisymmetric polynomials, [2, 3] show that
the dimension of the coinvariant space Rn

L

xQSym`
n y and TLnp2q agree: both are the nth

Catalan number Cn. Since TLnp2q shares many nice properties with reflection groups,
one might expect a Chevalley-type theorem from this coincidence, but there is no obvi-
ous TLnp2q-action on Rn

L

xQSym`
n y: Hivert’s action is not multiplicative and xQSym`

n y is
not a TLnp2q-submodule.

Motivated by the discussion above, we revisit two modules which afford the left
regular representation of the symmetric group Sn:

(1) the quotient Rn
L

xSym`
n y of the polynomial ring Rn “ Qrx1, . . . , xns by the ideal

generated by positive-degree symmetric polynomials Sym`
n , and

(2) the coordinate ring Rn
L

IpSnq for the vertices of the regular permutohedron Sn in
Qn, which are the points pσ1, . . . , σnq for each permutation σ on n letters.

Module (1) is a famous case of Chevalley’s theorem: the Sn-invariants of Rn are the
symmetric polynomials, and Rn

L

xSym`
n y is the Sn coinvariant ring. On the other hand,

module (2) comes from the left multiplicative action of Sn on the permutohedron realized
on the coordinate ring Rn

L

IpSnq where IpSnq is the vanishing ideal. However, as seen in
the work of Garsia and Procesi [7] and reference therein, a careful inspection reveals that
these modules determine one another! Consider the ideal

In “ x f px1, . . . , xnq ´ f p1, . . . , nq | f P Sym`
n y Ď IpSnq.

For each f P Rn, let hp f q denote the top-degree homogeneous component of f , and for
any ideal I in Rn write grpIq “ xhp f q | f P Iy. Then grpInq Ě xSym`

n y, and Gröbner basis
theory gives a linear isomorphism Rn

L

grpInq – Rn
L

In. We therefore have

|Sn| “ dim
`

Rn
L

xSym`
n y
˘

ě dim
`

Rn
L

grpInq
˘

“ dim
`

Rn
L

Inq ě dimpRn
L

IpSnq
˘

“ |Sn|,

so that In “ IpSnq and grpInq “ xSym`
n y, and Rn

L

xSym`
n y – Rn

L

IpSnq as vector spaces.
This isomorphism respects the Sn-action on each quotient: both IpSnq and xSym`

n y are
fixed spaces for the standard Sn-action on Rn, and this action coindices with the action on
points for Rn

L

IpSnq. Thus, we have an Sn-module isomorphism Rn
L

xSym`
n y – Rn

L

IpSnq,
though the left hand side has a natural grading and the right hand side does not.

Our work in [4] applies this approach to quasisymmetric functions and Temperley–
Lieb algebras. It is known that xSym`

n y Ď xQSym`
n y, and that there is a surjective algebra
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homomorphism ϕ : CSn Ñ TLnp2q. Guided by these relationships, we searched for a
subset QSVn Ď Sn Ď Qn which satisfies:

(i) |QSVn| “ Cn,
(ii) the image ϕpQSVnq is a basis of TLnp2q, and

(iii) considering the vanishing ideal IpQSVnq, we have gr
`

IpQSVnq
˘

“ xQSym`
n y.

Assuming such a set exists, one can define an action of TLnp2q on the space Rn
L

xQSym`
n y

using Gröbner basis theory and the multiplication constants for the basis obtained from
QSVn. However, QSVn is not readily found: it took several years of computer exploration
to find a list of candidates for small values of n. We have now found it, along with a
number of remarkable properties that should be of interest to the wider community.

The set QSVn Ď Sn is defined in Section 3. After discovering it, we noticed that the
cycle structure of permutations in QSVn determine a noncrossing partition, tying them
to a more general story of Coxeter–Catalan combinatorics for the symmetric groups [5]
(see also [17]). For example, writing Qλ to denote the element of QSVn indexed by the
partition λ,

λ “ 1 2 3 4 5 6 7 corresponds to Qλ “ p1qp72qp653qp4q.

Through this connection, [9, 10] and [20] have studied bases of general Temperley–Lieb
algebras which specialize to ϕpQSVnq for TLnp2q, so only condition (iii) remains.

Our initial attempts to prove condition (ii) also led us to an exciting discovery about
how QSVn sits in Sn. In Section 4 we define an equivalence relation „ on Sn using the
weak excedance set of a permutation and its inverse. We call the equivalence classes of
Sn
L

„ excedance classes, and show that each noncrossing partition λ bijectively determines
an excedance class Cλ. Surprisingly, the Bruhat order induces a well-defined quotient or-
der on excedance classes. In the following, ĺ denotes the order on noncrossing partitions
which is dual to Young’s lattice, described further in Section 3.

Theorem 4.2. Writing ď for the relation on excedance classes Sn
L

„ induced by the Bruhat order,
Cλ ď Cµ if and only if λ ĺ µ.

This exhibits a duality between sub- and quotient orders of the Bruhat poset: a par-
allel result is given by [10] for the set QSVn as a sub-poset of the Bruhat order (see
Section 3). The result of [10] also simplifies the proof of Theorem 4.2 we give in [4].

Corollary 4.3. Each excedance class Cλ is an interval in the Bruhat order, with upper bound
Qλ P QSVn and lower bound given by a 321-avoiding permutation.

The combinatorics of excedance classes are very rich, and there is much left to ex-
plore. In Section 5, we use excedance classes of Sn to produce bases of TLnp2q. Using
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results of [10] and [20], our Theorem 5.1 restates the fact that QSVn satisfies condition
(ii) above. However, our technique is more general, and produces many (often novel)
bases of TLnp2q coming from the surjection ϕ : CSn Ñ TLnp2q.

Theorem 5.2. Let n ě 0 and for each noncrossing partition λ of size n, fix an element wλ P Cλ.
Then the set tϕpwλq | noncrossing partitions λu is a basis of TLnp2q.

Finally, in Section 6 we outline our approach to proving that the set QSVn satisfies
condition (iii) above. The space of positive-degree quasisymmetric polynomials QSymn
has a homogeneous basis of monomial quasisymmetric functions Mα indexed by the
compositions α ( d of positive integers d ą 0 with length ℓpαq ď n. For each such
composition α, we construct a nonhomogeneous polynomial Pα P Rn for which hpPαq “

Mα and show the following.

Theorem 6.3. The ideal xPα | α ( d with d ą 0 and ℓpαq ď ny Ď Rn is the vanishing ideal
IpQSVnq and xQSym`

n y “ gr
`

IpQSVnq
˘

.

From this, we obtain a linear isomorphism Rn
L

IpQSVnq – Rn
L

xQSym`
n y.

2 Noncrossing partitions and Bruhat order

Noncrossing partitions: Let n be a nonnegative integer. A noncrossing partition of size n
is a diagram λ consisting of:

1. the positive integers 1, . . . , n, placed from left to right along a horizontal axis; and
2. a set of left-to-right arcs i j “ pi, jq, i ă j drawn above the axis with no intersec-

tions or coterminal points: λ contains no pair i k , j l with i ď j ă k ď l.

For example,

λ “ 1 2 3 4 5 6 7 (2.1)

is a noncrossing partition of size 7 containing three arcs: 2 7 , 3 5 , and 5 6 .
Considering a noncrossing partition λ as an (undirected) graph, the connected com-

ponents of λ give a partition of the set rns “ t1, . . . , nu, which is the origin of the term.
For example, the noncrossing partition shown in Equation (2.1) corresponds to the set
partition

␣

t1u, t2, 7u, t3, 5, 6u, t4u
(

. Let

NCPn “ tnoncrossing partitions of size nu.

The size of NCPn is the nth Catalan number, Cn “ 1
n`1

`2n
n
˘

[19].
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Given an arc i j P λ, say that i is the left endpoint and j is the right endpoint, and
let

λ`
“ tleft endpoints in λu and λ´

“ tright endpoints in λu.

For example, with the noncrossing partition λ in (2.1), λ` “ t2, 3, 5u and λ´ “ t5, 6, 7u.
The arcs in λ give a bijection between the sets λ` and λ´, so that |λ`| “ |λ´|.

Permutations and the Bruhat order: Let Sn denote the group of permutations of rns. We
represent elements of Sn either by using the standard one- and two-line notations or as
a product of cycles. We also write ℓ for the length function, so that for w P Sn, ℓpwq is
the number of inversions of w: ℓpwq “ |tpi, jq | 1 ď i ă j ď n and wi ą wju|.

The Bruhat order on Sn is the partial order generated by the relation

v ă w if and only if wv´1 is a transposition pi jq and ℓpvq ă ℓpwq.

This order is ubiquitous in the study of Sn and related objects (for examples, see [6]).

3 The set QSVn

Let λ be a noncrossing partition of size n. Define a permutation Qλ P Sn by

Qλpjq “

#

i if j P λ´ and i j P λ

k if j R λ´ and k is the largest element connected to j in λ

Thus, Qλ sends each j P rns to its leftward neighbor in λ, if such a neighbor exists, and
otherwise sends j to the rightmost element of its connected component.

The cycles of Qλ correspond to the connected components of λ, for example, with

λ “ 1 2 3 4 5 6 7 we have Qλ “ p1qp72qp653qp4q “ 1764352.

Let QSVn “ tQλ | λ P NCPnu. For example, the elements of QSV3 are:

Q
1 2 3

“ 321, Q
1 2 3

“ 312, Q
1 2 3

“ 213,

Q
1 2 3

“ 132, and Q
1 2 3

“ 123.

Remark 3.1. Given any n-cycle c P Sn, [5] gives a bijection between NCPn and the in-
terval between the identity and c in the absolute order on Sn. Our construction of the
permutations Qλ realize this bijection for the n-cycle c “ pn ¨ ¨ ¨ 21q.
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Figure 1: From left to right, the Hasse diagrams of: QSV3 with the Bruhat order; NCP3

with ĺ; and the dual interval in the Young’s lattice.

The Bruhat order on QSVn: The Bruhat order on Sn described in Section 2 restricts to a
partial order on the set QSVn. This order turns out to be very natural, as is described in
the paper [10], and we recall the description for use in later sections.

Define a partial order ĺ on the set NCPn of noncrossing partitions as the extension
of the covering relation: λ is covered by µ if and only if λ is obtained from µ in one of
the following ways:

1. removing an arc of the form i i`1 from µ, or

2. replacing any arc i k in µ with two arcs i j and j k for some i ă j ă k
which do not intersect or share a left or right endpoint with any other arc in µ.

Proposition 3.2 ([10, Theorem 1.1 and Corollary 7.5]). Let λ and µ be noncrossing partitions
of size n. The following are equivalent:

1. λ ĺ µ,
2. Qλ ď Qµ in the Bruhat order.

Moreover, the partial orders on NCPn and QSVn are each dual to the interval between the empty
diagram and the staircase in Young’s lattice; see Figure 1.

Remark 3.3. In fact, [10] describes the Bruhat order on the set tω0wω´1
0 | w P QSVnu,

where ω0 is the longest element of Sn. Vis-a-vis Remark 3.1, these are the non-crossing
partitions associated with the cycle p12 . . . nq instead of pn . . . 21q. Since conjugation by
ω0 is an automorphism of the Bruhat order, this result is equivalent to Proposition 3.2.
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4 The excedance quotient of the Bruhat order

In this section we describe a novel equivalence relation „ on Sn and show that it induces
a quotient of the Bruhat order. This equivalence relation is defined in a simple way using
the weak excedances of a permutation. We have discovered a number of nice properties
of the equivalence classes in Sn

L

„, which we summarize after our initial definition.
Given a permutation w P Sn, a weak excedance of w is a pair pi, wiq for which i ď wi.

We define the excedance values Evalpwq and excedance positions Epospwq to be the sets

Evalpwq “ twi | pi, wiq is a weak excedance of wu, and

Epospwq “ ti | pi, wiq is a weak excedance of wu.

The sets Evalpwq and Epospwq are most easily seen using two-line notation for permuta-
tions. For example, marking the non-excedances of a permutation in red,

w “
1
3

2
5

3
1

4
4

5
2

6
6

7
5

8
8, Epospwq “ t1, 2, 4, 6, 8u, and Evalpwq “ t3, 4, 5, 6, 8u.

We define the excedance relation „ on Sn by:

v „ w if and only if Evalpvq “ Evalpwq and Epospvq “ Epospwq, (4.1)

and say that each equivalence class of Sn
L

„ is an excedance class.
We now summarize our main results on excedance classes. Each noncrossing parti-

tion λ of size n determines an excedance class:

Cλ “ tw P Sn | Evalpwq “ rns ´ λ` and Epospwq “ rns ´ λ´
u.

This construction is bijective, so that the excedance classes are counted by the Catalan
numbers. For example, the five excedance classes of S3 are:

C
1 2 3

“ t
1
3

2
2

3
1,

1
2

2
3

3
1u, C

1 2 3
“ t

1
3

2
1

3
2u, C

1 2 3
“ t

1
2

2
1

3
3u,

C
1 2 3

“ t
1
1

2
3

3
2u, and C

1 2 3
“ t

1
1

2
2

3
3u.

The Bruhat order induces a relation on Sn
L

„. Recall the order ĺ from Section 3.

Theorem 4.2. Writing ď for the relation on excedance classes Sn
L

„ induced by the Bruhat order,
Cλ ď Cµ if and only if λ ĺ µ.

Our proof Theorem 4.2 in [4] includes the intermediate result that each excedance
class Cλ contains unique Bruhat-minimal and Bruhat-maximal elements, and moreover
these are respectively a 321-avoiding permutation and the element Qλ P QSVn. Com-
bined with Theorem 4.2, this implies the following corollary.
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Corollary 4.3. Each excedance class Cλ is an interval in the Bruhat order, with maximum Qλ P

QSVn and minimum given by a 321-avoiding permutation.

We now identify the minimal element of each excedance class. For a noncrossing
partition λ of size n, enumerate the sets λ`, λ´, rns ´ λ`, and rns ´ λ´ in increasing
order as

λ`
“ ta1 ă a2 ă ¨ ¨ ¨ ă asu, λ´

“ tb1 ă b2 ă ¨ ¨ ¨ ă bsu,

rns ´ λ`
“ tx1 ă x2 ă ¨ ¨ ¨ ă xn´su, and rns ´ λ´

“ ty1 ă y2 ă ¨ ¨ ¨ ă yn´su.

Let Tλ P Sn be the permutation with

Tλpiq “

#

ar if i P λ´ and i “ br

xr if i R λ´ and i “ yr.

Thus, the two-line notation for Tλ can be obtained by placing the elements of λ` in
increasing left-to-right order below the elements of λ´, and placing the elements of
rns ´ λ` below the elements of rns ´ λ´ in the same manner. For example, with n “ 8
and

λ “ 1 2 3 4 5 6 7 8

we have λ` “ t1, 2, 5u and λ´ “ t3, 5, 7u, r8s ´ λ` “ t3, 4, 6, 7, 8u, and r8s ´ λ´ “

t1, 2, 4, 6, 8u, and consequently

Tλ “
1
3

2
4

3
1

4
6

5
2

6
7

7
5

8
8,

where non-excedances are marked in red, as at the beginning of Section 4.

Proposition 4.4. For all noncrossing partitions λ, Tλ P Cλ, is the Bruhat-minimum element of
Cλ, and is 321-avoiding.

Remark 4.5. Proposition 4.4 implicitly defines a bijection between 321-avoiding permu-
tations and noncrossing partitions. This bijection is equivalent to one used by Zinno
in [20] and Gobet in [9].

5 Bases for the Temperley–Lieb Algebra TLnp2q

The Temperley–Lieb algebra TLnp2q is the C-algebra generated by elements e1, . . . , en´1
subject to the following relations for each 1 ď i, j ď n

e2
i “ 2ei; eiej “ ejei if |i ´ j| ą 1; eiejei “ ei if |i ´ j| “ 1.

There is a surjective algebra morphism from the symmetric group algebra CSn to TLnp2q

given by ϕ : CSn Ñ TLnp2q where ϕpsiq “ 1 ´ ei. In particular TLnp2q – Sn
L

kerpϕq.
It is well-known that the images of all 321-avoiding permutations under ϕ forms a

basis for TLnp2q. Gobet [9] shows that the set QSVn has a similar property.
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Theorem 5.1 ([9, Theorem 7.21]). For all n ě 0, the set ϕpQSVnq is a basis for TLnp2q.

In our investigation of excedance classes we found an application of their structure
the problem of computing sets of permutations which give bases of TLnp2q under ϕ. We
include it here as it is a nice result of our current investigation.

Theorem 5.2. Let n ě 0 and for each noncrossing partition λ of size n, fix an element wλ P Cλ.
Then the set tϕpwλq | noncrossing partitions λu is a basis of TLnp2q.

Here, we discuss its implications: taking wλ “ Qλ in the theorem gives yet another
proof of Theorem 5.1, confirming the results of [10] and [20]. In general, however, many
bases obtained via Theorem 5.2 are novel. The smallest novel example can be found with
n “ 4: the set

t
1
4

2
3

3
1

4
2,

1
4

2
2

3
3

4
1,

1
4

2
2

3
1

4
3,

1
3

2
1

3
4

4
2,

1
1

2
4

3
3

4
2,

1
4

2
1

3
2

4
3,

1
3

2
2

3
1

4
4,

1
3

2
1

3
2

4
4,

1
2

2
1

3
4

4
3,

1
1

2
3

3
2

4
3,

1
2

2
1

3
3

4
4,

1
1

2
3

3
2

4
4,

1
1

2
2

3
4

4
3,

1
1

2
2

3
3

4
4u

meets the criteria of Theorem 5.2, and accordingly maps to a basis of TLnp2q under ϕ.
This set is neither QSV4 nor the set of 321-avoiding permutations (4312 R QSV4 and
is not 321-avoiding). Moreover, the set above is not described in [10, 20]: each subset
of S4 in these sources which is not QSV4 contains more than one element from certain
excedance classes and none from others.

6 The quasisymmetric variety

In this section, we summarize Theorem 6.3 and its proof, which is given in full in our
paper [4]. As in the introduction, let QSymn denote the quasisymmetric polynomials in
Rn “ Qrx1, . . . , xns and write Mα for the monomial quasisymmetric function indexed by
the composition α. In Section 6.1, we define a family of non-homogeneous polynomials
Pα which are also indexed by compositions and we show that

Pα “ Mα ` lower degree terms. (6.1)

For a permutation σ P Sn, we write Pαpσq for the evaluation of Pα at x1 “ σ1, x2 “ σ2, and
so on. Recall the set QSVn defined in Section 3.

Theorem 6.2. For each non-empty integer composition α with at most n parts and any σ P QSVn
we have Pαpσq “ 0.

Our proof of Theorem 6.2 in [4] uses the noncrossing cycle structure of each element
σ P QSVn, as well as a sign-reversing involution to establish desired vanishing property.

Now recall that for any f P Rn, hp f q denotes the homogeneous top-degree component
of f , and that for any ideal I Ď Rn, we write grpIq “ xhp f q | f P Iy. Standard results in
Gröbner basis theory give a linear isomorphism Rn

L

I – Rn
L

grpIq. With Theorem 6.2 and
the dimension considerations set out in the introduction, this proves of our main result.
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Theorem 6.3. The ideal xPα | non-empty compositions α of length ℓpαq ď ny Ď Rn is the van-
ishing ideal IpQSVnq and

xQSym`
n y “ gr

`

IpQSVnq
˘

,

where QSym`
n denotes the set of positive-degree quasisymmetric functions.

Using Gröbner basis theory again, we obtain the following corollary.

Corollary 6.4. We have Rn
L

xQSym`
n y – Rn

L

IpQSVnq as vector spaces.

Remark 6.5. Remarks 3.1 and 3.3 describe the combinatorics of the sets twσw | σ P QSVnu,
each of which corresponds to a unique n-cycle c P Sn. It is natural to consider how
Theorems 6.2 and 6.3 generalize to these sets as well, and we explain this below.

1. For the set tω0σω0 | σ P QSVnu corresponding to the Coxeter element c “ p1 2 . . . nq,
our results generalize completely. In particular, the modified polynomials

ω0Pαω0 “ Pαp´xn ` n ` 1, . . . , ´x2 ` n ` 1, ´x1 ` n ` 1q

vanish on every permutation ω0σω0 for σ P QSVn. Moreover,

h
`

ω0Pαω0
˘

“ Mαp´xn, . . . , ´x2, ´x1q “ p´1q
|α|MÐÝα ,

where for a composition α “ pα1, . . . , αkq, MÐÝα denotes the monomial quasisymmet-
ric function corresponding to the reverse ÐÝα “ pαk, . . . , α1q. This is closely related to
the automorphisms of the ring of quasisymmetric functions (see, for example [14]).

2. For the sets corresponding to n-cycles other than p1 2 . . . nq and pn . . . 2 1q, the
vanishing ideal does not have top-degree homogeneous component xQSym`

n y.

6.1 The vanishing polynomial Pα

In this section we define the polynomials Pα and prove Theorem 6.2. We begin with a
short review of compositions and the refinement order as they relate to QSym.

A composition is a sequence of positive integers α “ pα1, . . . , αkq. We refer to k as
the length of α and to d “

řk
i“1 αi as the size of α. Compositions are partially ordered by

refinement: the composition α refines another composition β “ pβ1, . . . , βℓq if there exists
a sequence 1 “ f1 ă f2 ă ¨ ¨ ¨ ă fℓ`1 “ k ` 1 for which βi “ α fi ` α fi`1 ` ¨ ¨ ¨ ` α fi`1´1, and
in this case we write β ľ α. Whenever we have a refinement relation β ľ α, we will use
the notation f1, f2, . . . , fℓ`1 to refer to the sequence of indices in the definition.

For each composition of length k ě 1, the monomial quasisymmetric function Mα P

Rn is defined by
Mα “

ÿ

1ďi1ăi2ă¨¨¨ăikďn

xα1
i1

xα2
i2

¨ ¨ ¨ xαk
ik

,
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where the sum is over subsets ti1, . . . , iku of rns, enumerated in increasing order. Using
the same convention we define the vanishing polynomial Pα P Rn to be

Pα “
ÿ

βľα

ÿ

1ďi1ăi2ă¨¨¨ăiℓďn

ℓ
ź

j“1

´

px
α f j
ij

´ i
α f j
j q

f j`1´1
ź

s“ f j`1

p´ijq
αs
¯

.

While this formula appears to be quite dense, expanding it reveals an intuitive combina-
torial structure. We compute one example in its entirety for the sake of exposition:

Pp1,2,1qpx1, . . . , x4q “px1 ´ 1qpx2
2 ´ 22

qpx3 ´ 3q ` px1 ´ 1qpx2
2 ´ 22

qpx4 ´ 4q

` px1 ´ 1qpx2
3 ´ 32

qpx4 ´ 4q ` px2 ´ 2qpx2
3 ´ 32

qpx4 ´ 4q

´ px1 ´ 1qpx2
2 ´ 22

q2 ´ px1 ´ 1qpx2
3 ´ 32

q3 ´ px1 ´ 1qpx2
4 ´ 42

q4

´ px2 ´ 2qpx2
3 ´ 33

q3 ´ px2 ´ 2qpx2
4 ´ 42

q4 ´ px3 ´ 3qpx2
4 ´ 42

q4

´ px1 ´ 1q12
px2 ´ 2q ´ px1 ´ 1q12

px3 ´ 3q ´ px1 ´ 1q12
px4 ´ 4q

´ px2 ´ 2q22
px3 ´ 3q ´ px2 ´ 2q22

px4 ´ 4q ´ px3 ´ 3q32
px4 ´ 4q

` px1 ´ 1q13
` px2 ´ 2q23

` px3 ´ 3q33
` px4 ´ 4q43,

where summands corresponding to the same index β ľ p1, 2, 1q are grouped horizontally
and by alignment. These values of β are respectively p1, 2, 1q, p1, 3q, p3, 1q, and p4q.
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