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Abstract. For w in the symmetric group, we use permutation patterns to provide an
exact formula for the smallest positive power qh(w) appearing in the Kazhdan–Lusztig
polynomial Pe,w(q). We also use Weyl group patterns to provide a tight upper bound
on h(w) in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.
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1 Introduction

Let G be a complex semisimple Lie group, with Borel subgroup B containing maximal
torus T and corresponding Weyl group W. The Bruhat decomposition G =

⊔
w∈W BwB

gives rise to the Schubert varieties Xw := BwB/B inside the flag variety G/B, whose
containments determine the Bruhat order on W: y ≤ w if Xy ⊂ Xw. The Kazhdan–
Lusztig polynomials Py,w(q) ∈ Z[q] have since their discovery [14] proven to underlie
deep connections between canonical bases of Hecke algebras, singularities of Schubert
varieties, and representations of Lie algebras.

Theorem 1 (Kazhdan and Lusztig [15]). For y ≤ w, let IH∗(Xw)y denote the local intersec-
tion cohomology of Xw at the T-fixed point yB, then

Py,w(q) = ∑
i

dim(IH2i(Xw)y)qi.

Theorem 1 implies that Py,w(q) has nonnegative coefficients, a property which is
completely obscured by their recursive definition (Definition 7). It is known that for all
y ≤ w one has Py,w(0) = 1.

Theorem 2 (Deodhar [11]; Peterson (see [9])). If G is simply-laced and y ≤ w, then Xw is
smooth at yB if and only if Py,w(q) = 1. In particular, Xw is smooth if and only if Pe,w(q) = 1.
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In light of Theorem 1, one wants to understand Py,w(q) explicitly enough to determine
which coefficients vanish. Indeed, the view of the Py,w as a measure of the failure of local
Poincaré duality in Xw was among the original motivations in [14]. Unfortunately, Py,w
may be arbitrarily complicated [18] and the formulae [8] which exist involve cancellation,
and are thus not well-suited to this problem. If Xw is singular (as is typically true) one
can at least ask for the smallest nontrivial coefficient, the first degree in which Poincaré
duality fails. Writing [qi]Py,w for the coefficient of qi in Py,w(q), define:

h(w) := min{i > 0 | [qi]Pe,w ̸= 0} = min
y≤w

min{i > 0 | [qi]Py,w ̸= 0}.

The second equality follows from the monotonicity property of the Py,w [7]. We make
the convention that h(w) = +∞ when Xw is smooth.

Conjecture 3 (Billey and Postnikov [2]). Let G be simply-laced of rank r, and suppose Xw is
singular. Then h(w) ≤ r.

Billey and Postnikov’s conjecture is somewhat surprising, since deg(Py,w) may be as
large as 1

2(ℓ(w)− ℓ(y)− 1) which is of the order of r2, where ℓ denotes length. An upper
bound on h(w) in certain special infinite Coxeter groups was given in [19].

The decomposition Xw =
⊔

y≤w ByB/B is an affine paving, with the cell ByB/B hav-
ing complex dimension ℓ(y). We thus have

L(w) := ∑
y≤w

qℓ(y) = ∑
j≥0

dim(H j(Xw))qj/2,

the Poincaré polynomial of Xw. Björner–Ekedahl [6] gave a precise interpretation of h(w)
in terms of L(w), as the smallest homological degree in which Poincaré duality fails.

Theorem 4 (Björner and Ekedahl [6]). For 0 ≤ i ≤ ℓ(w)/2 we have [qi]L(w) ≤ [qℓ(w)−i]L(w),
and

h(w) = min{i > 0 | [qi]L(w) < [qℓ(w)−i]L(w)}.

Theorem 4 will be a useful tool in this work, but cannot be directly used to resolve
Conjecture 3 since it is difficult to compute [qi]L(w) in general.

Our first main theorem1 is a refinement and proof of Conjecture 3.

Theorem 5. Let G be simply-laced of rank r, and suppose Xw is singular. Then h(w) ≤ r − 2.

The bound of r − 2 is tight when G is a member of the infinite families SLr+1 or SO2r.
When G is one of the exceptional simply-laced groups of type E6, E7, or E8, Theorem 5
follows from the computations made by Billey–Postnikov [2]. In the case G = SLn+1,
the theorem can be derived from the classification of the singular locus of Xw [5, 17].
However, in this case we provide a new exact formula for h(w) for any permutation w.
This theorem is phrased in terms of pattern containment (see Section 2.5.2).

1A full version of this work is available at [13]
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Theorem 6. Let G = SLn+1, and suppose Xw is singular. Then

h(w) =

{
1 if w contains 4231,
mHeight(w) otherwise,

where mHeight(w) denotes the minimum height of a 3412 pattern in w.

In the case Pe,w(1) = 2, Theorem 6 follows from the work of Woo [21]. Our theorem
adds to the deep [22] and ubiquitous [1] links between singularities of Schubert varieties
and pattern containment.

2 Preliminaries

2.1 Bruhat order and Kazhdan–Lusztig polynomials

Let W be a Weyl group with simple reflections S = {s1, s2, . . .} and length function ℓ.
Write R for the set of reflections (conjugates of simple reflections), then Bruhat order ≤
on W is defined as the transitive closure of the relation y < yr if r ∈ R and ℓ(y) < ℓ(yr).

The left (respectively, right) descents DL(w) (resp. DR(w)) are those s ∈ S such that
sw < w (resp. ws < w).

Definition 7 (Kazhdan and Lusztig [14]). Define polynomials Ry,w(q) ∈ Z[q] by setting
Ry,w(q) = 0 if y ̸≤ w, Ry,w(q) = 1 if y = w, and requiring:

Ry,w(q) =

{
Rys,ws(q), if s ∈ DR(y) ∩ DR(w), and
qRys,ws(q) + (q − 1)Ry,ws, if s ∈ DR(w) \ DR(y).

Then there is a unique family of polynomials Py,w(q) ∈ Z[q], the Kazhdan–Lusztig poly-
nomials satisfying Py,w(q) = 0 if y ̸≤ w, Pw,w(q) = 1, and such that if y < w then Py,w has
degree at most 1

2(ℓ(w)− ℓ(y)− 1) and

qℓ(w)−ℓ(y)Py,w(q−1) = ∑
a∈[y,w]

Ry,a(q)Pa,w(q).

Although not apparent from Definition 7, the Py,w satisfy an inversion symmetry:

Proposition 8. Let y, w ∈ W, then Py,w(q) = Py−1,w−1(q). In particular, h(w) = h(w−1).

2.2 Fiber bundles of Schubert varieties

For J ⊂ S, we write WJ for the subgroup generated by J, PJ for the parabolic subgroup
of G generated by B and J, and W J for the set of minimal length representatives of
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the left cosets W/WJ . We have W J = {w ∈ W | DR(w) ∩ J = ∅}. Each w ∈ W
decomposes uniquely as wJwJ with wJ ∈ W J and wJ ∈ WJ . Using right cosets instead
gives decompositions w = Jw

Jw with Jw ∈ WJ and Jw ∈ JW = (W J)−1. Notice that
(w−1)J = (Jw)−1.

We write w0(J) for the unique element of WJ of maximum length and write [u, v]J

for the set [u, v] ∩ W J . Since parabolic decompositions are unique, we have an injection
[e, wJ ]J × [e, wJ ] ↪→ [e, w] given by multiplication.

Schubert varieties X J
wJ := BwJ PJ/PJ in the partial flag variety G/PJ have an affine

paving by ByPJ/PJ for y ∈ W J and y ≤ wJ , and so

LJ(wJ) := ∑
y∈W J

y≤wJ

qℓ(y) = ∑
j≥0

dim(H j(X J
wJ ))q

j/2.

Definition 9 (Richmond and Slofstra [20]). The parabolic decomposition w = wJwJ is
called a Billey–Postnikov decomposition or BP-decomposition of w if supp(wJ)∩ J ⊂ DL(wJ).

Theorem 10 (Richmond and Slofstra [20]). The map Xw ↠ X J
wJ induced by the map G/B →

G/PJ is a bundle projection if and only if J is a BP-decomposition of w, and in this case the fiber
is isomorphic to XwJ . Taking Poincaré polynomials, we have LJ(wJ)L(wJ) = L(w) in this case.

2.3 Patterns in Weyl groups

Let Φ denote the root system for G, with positive roots Φ+ and simple roots ∆. For
w ∈ W, the inversion set is Inv(w) := {α ∈ Φ+ | wα ∈ Φ−}.

A subgroup W ′ of W generated by reflections is called a reflection subgroup, and is
itself a Coxeter group with reflections R′ = R∩W ′. We write ≤′ for the intrinsic Bruhat
order on W ′, Φ′ for the root system, and Inv′ for inversion sets.

Proposition 11 (Billey and Braden [4]; Billey and Postnikov [2]). Let W ′ ⊂ W be a reflection
subgroup, there is a unique function fl : W → W ′, the flattening map satisfying:

(1) fl is W ′-equivariant, and

(2) if fl(x) ≤′ fl(wx) for some w ∈ W ′, then x ≤ wx.

Furthermore, fl has the following explicit description: fl(w) is the unique element w′ ∈ W ′ with
Inv′(w′) = Inv(w) ∩ Φ′. If W ′ = WJ is a parabolic subgroup, then fl(w) = wJ .

Definition 12. We say that w ∈ W contains the pattern w′′ ∈ W ′′, if W has some reflection
subgroup W ′, with an isomorphism W ′ φ−→ W ′′ as Coxeter systems, such that φ(fl(w)) =
w′′. Otherwise, w is said to avoid w′′.
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1 2 3 n−1
· · ·An−1 · · ·

0

1
2 3 n−1

Dn

Figure 1: The Dynkin diagrams for Types An−1 and Dn.

We will make use of the following result, which is proven using patterns.

Theorem 13 (Billey and Braden [4]). Let J ⊂ S, then h(w) ≤ h(wJ).

Billey and Postnikov gave the following characterization of smooth Schubert varieties,
generalizing the work of Lakshmibai–Sandhya [16]. We write W(Z) to denote the Weyl
group of Type Z, where Z is one of the types in the Cartan–Killing classification.

Theorem 14 (Billey and Postnikov [2]). Let G be simply-laced, then the Schubert variety
Xw ⊂ G/B is smooth if and only if w avoids the following patterns: s2s1s3s2 ∈ W(A3),
s1s2s3s2s1 ∈ W(A3), and s2s0s1s3s2 ∈ W(D4).

2.4 Conventions for simply-laced groups

2.4.1 G = SLn (Type An−1)

We let B be the set of lower triangular matrices in G, and T ⊂ B the diagonal matrices in
G. We have Φ(An−1) = {ej − ei | 1 ≤ i ̸= j ≤ n}, Φ+(An−1) = {ej − ei | 1 ≤ i < j ≤ n},
and ∆(An−1) = {ei+1 − ei | 1 ≤ i ≤ n − 1}.

Under these conventions, the Weyl group W(An−1) acts on LieR(T)∗ = Rn/(1, . . . , 1)
by permutation of the coordinates, yielding an isomorphism W(An−1) with the symmet-
ric group Sn. Letting αi := ei+1 − ei, the corresponding simple reflection si is identified
with the transposition (i i + 1). It will often be convenient for us to write permutations
w in one-line notation as w(1) . . . w(n). The Dynkin diagram is shown in Figure 1.

2.4.2 G = SO2n (Type Dn)

We let B be the set of lower triangular matrices in G, and T ⊂ B the diagonal matrices in
G. We have Φ(Dn) = {ej ± ei | 1 ≤ i ̸= j ≤ n}, Φ+(Dn) = {ej ± ei | 1 ≤ i < j ≤ n}, and
∆(Dn) = {e2 + e1} ∪ {ei+1 − ei | 1 ≤ i ≤ n − 1}.

Under these conventions, the Weyl group W(Dn) acts on LieR(T)∗ = Rn by permut-
ing coordinates and negating pairs of coordinates. This identifies W(Dn) with the per-
mutations w of {−n, . . . ,−1, 1, . . . , n} satisfying w(i) = −w(−i) for all i, and such that
|{w(1), . . . , w(n)} ∩ {−n, . . . ,−1}| is even. We write Dn for this realization of W(Dn).
Such a permutation can be uniquely specified by its window notation [w(1) . . . w(n)].
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Write δ0 = e2 + e1 and δi = ei+1 − ei, i = 1, 2, . . . , n − 1 for the simple roots. It
will often be convenient for us to write ī for −i, and we use these interchangeably. We
also make the convention that eī = e−i := −ei for i > 0. We have simple reflections
s0 = (1 2̄)(1̄ 2) and si = (i i + 1)(ī i+1) for i = 1, . . . , n − 1.

2.5 Reflection subgroups and diagram automorphisms

See Figure 1 for our labeling of the Dynkin diagrams. The following is clear:

Proposition 15. The diagram of the Type An−1 has an automorphism εA sending αi 7→ αn−i for
i = 1, . . . , n − 1, and the diagram of Type Dn has an automorphism εD interchanging δ0 ↔ δ1.
If ε ∈ {εA, εD}, then h(w) = h(εD(w)).

2.5.1 Reflection subgroups

In light of Theorem 14, we will be concerned with reflection subgroups isomorphic to
W(A3) and W(D4) inside W(An−1) and W(Dn).

Proposition 16. Reflection subgroups isomorphic to W(A3) and W(D4) inside W(An−1) and
W(Dn) are characterized as follows:

(a) No reflection subgroup W ′ ⊂ W(An−1) is isomorphic to W(D4).

(b) Reflection subgroups W ′ ∼= W(A3) inside W(An−1) are conjugate to the parabolic sub-
group W(An−1){1,2,3}.

(c) Reflection subgroups W ′ ∼= W(D4) inside W(Dn) are conjugate to the parabolic subgroup
W(Dn){0,1,2,3}.

(d) Reflection subgroups W ′ ∼= W(A3) inside W(Dn) come in two classes: those related to
W(Dn){1,2,3} by conjugacy and εD (Class I), and those conjugate to W(Dn){0,1,2} (Class
II).

2.5.2 One line notation and patterns

We will be interested in occurrences of the patterns from Theorem 14 in elements w ∈
W(An−1) or W(Dn). For w ∈ W(Dn), it will sometimes be useful for us to distinguish
between Class I and II patterns (see Proposition 16(d)). Realizing these Weyl groups
as Sn and Dn, respectively, allows for one-line interpretations of pattern containment
(summarized in Figure 2). This approach to pattern containment is in some sense a hy-
brid between the approaches of Billey [3] using signed patterns and of Billey, Braden,
and Postnikov [2, 4] using patterns in the sense of Definition 12. Our distinction be-
tween Class I and II patterns is seemingly novel and reflects the disparate effects that
occurrences of these patterns can have on h(w).
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Type Class Pattern One-line

A3 I s2s1s3s2 3412

A3 II s2s1s3s2 ±123̄

A3 I s1s2s3s2s1 4231

A3 II s1s2s3s2s1 ±13̄2̄

D4 s2s0s1s3s2 ±143̄2

Figure 2: The patterns from Theorem 14 with their one-line notations, divided accord-
ing to type and class.

Definition 17.

(i) For p a signed permutation of [k], we say w ∈ Dn contains p at positions 1 ≤ i1 <
· · · < ik ≤ n if sign(w(ij)) = sign(p(j)) for j = 1, . . . , k and |w(i1)|, . . . , |w(ik)| are
in the same relative order as |p(1)|, . . . , |p(k)|.

(ii) For p ∈ Sk, we say w ∈ Sn contains p at positions 1 ≤ i1 < · · · < ik ≤ n if
w(i1), . . . , w(ik) have the same relative order as p(1), . . . , p(k). We say u ∈ Dn
contains p at positions i1 < · · · < ik, where each ij ∈ ±[n] if u(i1), . . . , u(ik) have
the same relative order as p(1), . . . , p(k) and |i1|, . . . , |ik| are distinct.

In each case, we say that the values of the occurrence are w(i1), . . . , w(ik).

The following is a translation of Theorem 14 in light of our conventions for patterns.

Proposition 18. Let G be simply-laced; then Xw ⊂ G/B is smooth if and only if w avoids the
patterns 3412,±123̄, 4231,±13̄2̄, and ±143̄2 (see Figure 2).

The following statistic on occurrences of the pattern 3412 will be of special impor-
tance for us (see Theorem 6).

Definition 19 (See [10, 21]). We say an occurrence of 3412 in w ∈ Sn or Dn at positions
a < b < c < d has height equal to w(a)− w(d). We let mHeight(w) denote the minimum
height over all occurrences of 3412 in w.

3 Upper bounds on h(w)

3.1 Proof strategy

We will identify certain patterns p (among those from Proposition 18) such that if w
contains p, then h(w) can be computed using Theorem 4 and an analysis of the Bruhat
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covers of w. Then, for w avoiding these patterns and containing others, we will—by
a combination of parabolic reduction (Theorem 13), inversion (Proposition 8), and di-
agram automorphisms (Proposition 15)—obtain a bound h(w) ≤ h(u) for u in some
special family S . Finally, we will show that elements u ∈ S have distinguished BP-
decompositions such that the base and fiber in the bundle (Theorem 10) with total space
Xu can be understood, allowing for the computation of h(u). In the remainder, we refer
primarily to the elements w ∈ W rather than the Schubert varieties Xw that they index,
although each of these steps has a geometric basis. We say w is smooth (resp. singular) if
Xw is smooth (resp. singular).

We only have space to give a few representative proofs and proof ideas in this ex-
tended abstract.

Proposition 20. Let w ∈ Sn or Dn; we have h(w) = 1 if w contains:

(i) 4231 and w ∈ Sn,

(ii) ±123̄,

(iii) ±143̄2, or

(iv) 3412 of height one.

Proof idea. The strategies for all cases are similar: containment of any of these patterns
implies a relation τ1 + τ2 = τ3 + τ4 for τ1, τ2, τ3, τ4 ∈ Inv(w). We show that this implies
a relation between roots indexing lower Bruhat covers of w. By results of Dyer [12], this
implies that [qℓ(w)−1]L(w) > [q]L(w), so that h(w) = 1 by Theorem 4.

3.2 Proof of Theorem 5 in Type A

In this section we obtain an upper bound on h(w) for w ∈ Sn in terms of mHeight(w);
this establishes Theorem 5 for W = Sn as well as one direction of Theorem 6.

Lemma 21. For n ≥ 4, consider w ∈ Sn where w(1) = n − 1, w(2) = n, w(n − 1) = 1,
w(n) = 2 and w(i) = n − i + 1 for 3 ≤ i ≤ n − 2. Then h(w) = n − 3.

Proof. Let J = {2, 3, . . . , n − 2} so that wJ = w0(J). The parabolic decomposition w =
wJwJ is a Billey–Postnikov decomposition. Moreover, L(wJ) = L(w0(J)) is palindromic,
since Xw0(J) is a product of flag varieties and therefore smooth. Every u ∈ W J satisfies
u(2) < u(3) < · · · < u(n−1) so by counting inversions with u(1) and u(n), we see
ℓ(u) = (u(1)− 1) + (n − u(n))− 1u(1)>u(n). Elements u ∈ [e, wJ ]J are characterized by
u(1) ≤ n − 1 and u(n) ≥ 2 with u(2) < · · · < u(n−1). We are now able to count the
rank sizes of [e, wJ ]J to be 1, 2, 3, . . . , n − 4, n − 3, n − 2, n − 1, n − 3, n − 4, . . . , 2, 1. Thus,
h(LJ(wJ)) = n − 3 and h(w) = min(h(LJ(wJ)), h(L(wJ))) = min(n − 3, ∞) = n − 3.
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For an occurrence of a 3412 in w at indices a < b < c < d with w(c) < w(d) <
w(a) < w(b) its content is 1 + |{i | b < i < c, w(d) < w(i) < w(a)}|. Let mCont(w) be the
minimum content of a 3412 pattern in w.

Lemma 22. For w ∈ Sn that contains 3412, mHeight(w) = mCont(w).

One advantage of working with content instead of height is that we evidently have
mCont(w) = mCont(w−1).

Lemma 23. Suppose that w ∈ Sn avoids 4231 and contains 3412. Then h(w) ≤ mHeight(w).

Proof. We use induction on n. The statement is true when n = 4, where h(3412) =
mHeight(3412) = 1. For a general n and w ∈ Sn, let k = mHeight(w) = mCont(w).
For J = {2, 3, . . . , n − 1}, if wJ has mCont(wJ) = k, then we are done by the induction
hypothesis and Theorem 13 which says h(w) ≤ h(wJ) ≤ mCont(wJ) = k. We can thus
assume without loss of generality that the index 1 appears in all 3412’s of w with content
k. Similarly, by considering J = {1, 2, . . . , n − 2}, we can also assume that the index n
appears in all 3412’s of w with content k. As h(w) = h(w−1), with the same argument
on w−1, we can reduce to the case that w contains a unique 3412 of content k on indices
1 < w−1(n) < w−1(1) < n (see Figure 3). As we assume that wJ does not contain a

•

•

•

•
A

B

C

∅

∅

∅

∅

∅

∅

Figure 3: The permutation diagram for w with an occurrence of 3412 on the boundary.
We draw permutation diagrams by putting •’s at Cartesian coordinates (i, w(i)).

3412 of content k, there does not exist i such that 1 < i < w−1(n) with w(i) > w(n).
By symmetry, we know six of the regions in Figure 3 are empty as shown, and label the
other three regions as A, B, C. By definition, |B| = k − 1. If k = 1, then h(w) = 1 by
Proposition 20. If k > 1, B is not empty; since w avoids 4231, A and C must be empty.
Thus w is exactly the permutation in Lemma 21, which gives h(w) = n − 3 = k.

3.3 Extension to Type D

Proposition 24. If w ∈ Dn contains 4231, then h(w) ≤ 2.

Proof idea. We adapt the strategy for Proposition 20 to show that for most occurrences of
4231, we in fact have h(w) = 1. The few remaining cases are analyzed separately.
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Definition 25. Define the magnitude mag(w) as the smallest b > 0 such that w has an
occurrence of ±13̄2̄ with values ac̄b̄.

Proposition 26. Suppose w ∈ Dn contains ±13̄2̄ and avoids 4231, then h(w) ≤ mag(w)− 1.

Proposition 27. Let W = Dn for n ≥ 5, let J = S \ {1}, J′ = S \ {0}, K = S \ {n − 1}, and
suppose w ∈ Dn is singular, but satisfies:

(i) w avoids 4231,±13̄2̄,±123̄,±143̄2, and neither w nor εD(w) contains any occurrences of
3412 of height one,

(ii) wJ , wJ′ , wK, Jw, J′w, Kw are smooth.

Then w = u := [n, 2, 3̄, 4̄, . . . , n−1,±1] or w = εD(u).

We are now ready to complete the proof of Theorem 5, resolving Conjecture 3.

Proof of Theorem 5. First suppose G = SLr+1, and let w ∈ W(Ar) = Sr+1 such that Xw is
singular. By Theorem 14, w contains 4231 or 3412. If w contains 4231, then h(w) = 1 by
Proposition 20. Otherwise w avoids 4231 and contains 3412, so h(w) ≤ mHeight(w) by
Lemma 23. It is clear by definition that mHeight(w) ≤ r − 2 for any w, so we are done.

Now suppose G = SO2r for r ≥ 5, and let w ∈ W(Dr) = Dr. Suppose by induc-
tion that the claim is true for G = SO2r′ for r′ < r (the base case r′ = 4 is covered
by the computations in [2]). If w contains 4231, then h(w) ≤ 2 ≤ r − 2 by Proposi-
tion 24, so we may assume that w avoids 4231. Then by Proposition 26, if w contains
±13̄2̄ we have h(w) ≤ mag(w) ≤ r − 2. If w contains any of the patterns from Proposi-
tion 20, then h(w) = 1 ≤ r − 2. Let J = S \ {2}, J′ = S \ {0}, K = S \ {r − 1}; if any of
wJ , wJ′ , wK, Jw, J′w, Kw is singular, then by the type A result, or by the induction hypoth-
esis, we have h(w) ≤ r − 3. Finally, if w does not fall into any of the above cases, then w
satisfies the hypotheses (i) and (ii) of Proposition 27, so w = u := [r, 2, 3̄, 4̄, . . . , r−1,±1]
or w = εD(u).

We will now compute h(u) = h(εD(u)); suppose for convenience that r is even, the
other case being exactly analogous. Let I = {1, 2 . . . , r − 2}, then we have uI = w0(I) is
the longest element of Sr−1, so h(uI) = ∞. Thus we need to compute h(LI(uI)) with
uI = [r−1, . . . , 4̄, 3̄, 2, r, 1̄]. Notice ℓ(uI) = N := 1

2(r
2 − 3r + 4) with reduced word:

s0(s2s0)(s3s2s1) · · · (sr−4sr−5 · · · s3s2s0)(sr−3 · · · s3s2s1)(sr−2 · · · s3s2s0)sr−1.

We claim that LI(uI) = 1 + 2q + 3q2 + · · ·+ aqN−2 + 2qN−1 + qN, with a ≥ 4, so that
h(u) = h(LI(uI)) = 2 < r − 2. Indeed, the elements of length one in [e, uI ]I are {s0, sr−1},
the elements of length two are {s0sr−1, s2s0, sr−2sr−1}, and the elements of length N − 1
are {s0uI , s2uI}. Consider the four elements z1 = s0s2uI , z2 = s2s0uI , z3 = s0uIsr−1, z4 =
s3s2uI . It is easy to check for i = 1, 2, 3, 4 that ℓ(zi) = N − 2, that zi ≤ uI , and that
zi ∈ W I ; thus a ≥ 4 as desired.
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4 Exact formula when G = SLn

For w ∈ Sn, we have proved the upper bound in Theorem 6 in Section 3.2. The lower
bound follows from Lemma 28 below.

Lemma 28. Suppose that w ∈ Sn avoids 4231 and contains 3412. Then h(w) ≥ mHeight(w).

Proof idea. This is an inductive argument using a diagram analysis, analogous to but
more involved than the proof of Lemma 23. The relevant diagram is shown in Figure 4.

•

•

•(c, w(c))

•
(b, w(b))

•
•
•
•
•A B

C

• ∅

∅

•

•

••

(1, w(1))

(w−1(1), 1)

D

Figure 4: The permutation diagram of w used in the proof of Lemma 28.
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