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Abstract. For affine Weyl groups and elements associated to dominant coweights, we
present a convex geometry formula for the size of the corresponding lower Bruhat
intervals. Extensive computer calculations for these groups have led us to believe that
a similar formula exists for all lower Bruhat intervals.
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1 Introduction

In this extended abstract of the article [9], we study, for any affine Weyl group, the
lower Bruhat interval for the element θ(λ) (see Definition 2.1) associated to a dominant
coweight λ. These elements are intimately related to representation theory (character
formulas for Lie groups, geometric Satake equivalence, quantum groups, among others).
While calculating with indecomposable Soergel bimodules [12] and Kazhdan-Lusztig
polynomials [4, 13], it became apparent that finding formulas for the cardinalities of
lower Bruhat intervals played a crucial role. Surprisingly, little is known apart from
length 2 (general) intervals [6, Lemma 2.7.3], lower intervals for smooth elements in
Weyl groups [17, 14] and related results for affine Weyl groups [20, 7].

Our two main results relate the lower interval ≤ θ(λ) := [id, θ(λ)], i.e. the elements
below θ(λ) in the (strong) Bruhat order, with a certain convex polytope P(λ). We give a
construction of ≤ θ(λ) in terms of lattice points in P(λ). By using this construction, we
then derive a formula which computes the cardinality of ≤ θ(λ) as a linear combination
of the volumes of the faces of P(λ). For the sake of clarity, we will first explain these
results in a small example.

*federico.castillo@mat.uc.cl. Partially supported by FONDECYT-ANID grant 1221133.
†damiandlfa@gmail.com.
‡nlibedinsky@gmail.com. Partially supported by FONDECYT-ANID grant 1230247.
§davidricardoplaza@gmail.com. Partially supported by FONDECYT-ANID grant 1200341.

federico.castillo@mat.uc.cl
damiandlfa@gmail.com
nlibedinsky@gmail.com
davidricardoplaza@gmail.com


2 F. Castillo, D. de la Fuente, N. Libedinsky and D. Plaza

Let us consider W the affine Weyl group of type Ã2, and the usual identification
between elements in W and triangles (alcoves) in the tessellation of the plane by equi-
lateral triangles. If x is an element of W, when we write x ⊂ R2, we mean the set
of points in the closure of the alcove corresponding to x (the closed triangle). In Fig-
ure 1 we have the simple roots α1 and α2 in red and in blue, and the fundamental
weights ϖ1 and ϖ2. The id-triangle is the fundamental alcove. For a dominant weight
λ ∈ X+ := Z≥0ϖ1 + Z≥0ϖ2 (depicted by a white dot in Figure 1), let θ(λ) ∈ W denote
the λ-translate of the opposite of the fundamental alcove: those are the grey triangles.

Let also P(λ) denote Conv(W f · λ), the convex hull of the orbit of λ under the finite
Weyl group W f . For λ = 2ϖ1 + ϖ2, it is the yellow hexagon in Figure 2. The faces of
P(λ) containing λ are

FJ := P(λ) ∩ (λ + ∑
i∈J

Rαi), J ⊂ {1, 2}.

Figure 1 Figure 2

Consider the lattice L := λ + Zα1 + Zα2. Let λ = 2ϖ1 + ϖ2, as before. In Figure 3
the interval ≤ θ(λ) := {w ∈ W | w ≤ θ(λ)} is colored in grey, and the green dots are
the set Xλ := P(λ) ∩ L. Let µ ∈ Xλ and notice that there are six (grey) triangles adjacent
to µ. Since the subgroup W f of W corresponds to the six triangles adjacent to the origin
(where the three thick lines meet), the triangles adjacent to µ are precisely the µ-translate
of W f . In fact, this describes all the grey triangles:

≤ θ(λ) =
⊔

µ∈Xλ

W f + µ. (1.1)

In particular we get the following equation, which we call the Lattice Formula

| ≤ θ(λ)| = 6 |P(λ) ∩ L|. (1.2)
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Figure 3: Lattice Formula Figure 4: Geometric Formula

On the other hand, take the area of each colored part in Figure 4. By adding these
areas and dividing by the area of any triangle, we get

| ≤ θ(λ)| = µ1,2Area(F1,2) + µ1Length(F1) + µ2Length(F2) + µ∅Card(F∅), (1.3)

for some real numbers µJ . That is, µ1,2Area(F1,2) is the number of triangles in the yellow
part, µ1Length(F1) corresponds to the red part, µ2Length(F3) to the blue part and the
last term corresponds to the 6 turquoise triangles.

It is obvious that for a given λ, there are some µ’s satisfying Equation (1.3). However
it turns out that the coefficients µ’s corresponding to the partition of Figure 4 do not
depend on the choice of λ and that they are unique in this sense. We call this formula
the Geometric Formula.

Remark 1.1. The reader may notice that the formula presented here bears strong similar-
ities to Pick’s theorem. For the proof of Theorem B, a generalization of the formula (1.3)
applicable to any root system, we use a generalized version of Pick’s theorem developed
by Berline and Vergne. For more details see Section 3.2.

For any irreducible root system Φ one has an associated affine Weyl group W and
one can define similar concepts as in the Ã2 case. For example, θ(λ) corresponds to
the alcove touching λ in the direction of ρ (the sum of the fundamental weights). The
following theorem, a generalization of Equation (1.2), builds the bridge between Coxeter
combinatorics and convex geometry.

Theorem A (Lattice Formula). For every dominant coweight λ, we have

| ≤ θ(λ)| = |W f | |Conv(W f · λ) ∩ (λ + ZΦ∨)|.
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This formula is a key step to prove our main theorem below but it is also interesting
in its own right, as we now explain. In [19] Postnikov studied permutohedra of general
types. Among them, one of the most remarkable is the regular permutohedron of type
An. The number of integer points of that polytope can be interpreted [21, §3] as the
number of forests on {1, 2, . . . , n}. There are other interpretations for the integer points
of the regular permutohedron of type An, for instance, [1, Proposition 4.1.3] gives one as
certain orientations of the complete graph. We remark that these interpretations are only
for the regular permutohedron of type An. For non-regular permutohedra of any type,
before the present paper, there was no interpretation of the integer points. Theorem
A gives a first interpretation of this sort, and it is also of a different nature than the
pre-existent ones in that it is not related to graph theory but to Coxeter theory.

This theorem also gives an interesting new insight. For a generic permutohedron (i.e.
Conv(W f · λ) for some λ ∈ Z>0ϖ1 + Z>0ϖ2), the set of vertices is in bijection with the
finite Weyl group W f = {w ≤R w0} where ≤R is the right weak Bruhat order on W f and
w0 is the longest element. The Hasse diagram of ≤R on {w ≤R w0} corresponds to the
graph of the polytope.

Theorem A (or more precisely Proposition 2.4, a generalization of Equation (1.1))
says that if we consider the strong Bruhat order, the set ≤ θ(λ) can be obtained from the
lattice points inside the polytope. Heuristically, the weak Bruhat order gives the vertices
of the polytope and the strong Bruhat order gives the lattice points inside the polytope.

Now we can present our main result. For J ⊆ {1, 2, . . . , n}, one can define the face
FJ = Conv(WJ · λ) of Conv(W f · λ). See section 3.1 for more details.

Theorem B (Geometric Formula). For every rank n irreducible root system Φ, there are unique
µΦ

J ∈ R such that for any dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂{1,...,n}

µΦ
J Vol(FJ),

Remark 1.2. This Theorem generalizes Equation (1.3). One should be careful with the
intuition coming from type Ã2. In that small example, recall that the coefficients were
determined by the partition in Figure 4. For a given λ one can always construct a
partition P of (the alcoves of) ≤ θ(λ) according to Conv(W f · λ), and then derive some
coefficients µ’s. It is fortuitous that in the Ã2 case, these coefficients coincide with the
ones in the Geometric Formula. Already in Ã4 it is not true that Conv(W f · λ) ⊂≤ θ(λ),
and in Ã24 there is a negative µJ coefficient, so µJVol(FJ) is not the number of alcoves in
some p ∈ P .

Theorem B is proved by combining Theorem A with a particular formula for com-
puting the number of lattice points developed by Berline-Vergne [5] and Pommersheim-
Thomas [18]. The construction we use is part of a bigger family of formulae relating the
number of lattice points of a polytope with the volumes of its faces, see [3, §6].



On the size of Bruhat intervals 5

In [19], Postnikov gives several formulas for the volumes Vol(FJ) for any Φ. When Φ
is the root system of type An, in Section 4 we give some geometric coefficients µAn

J .
The volumes are polynomials in the coordinates m1, . . . , mn of λ in the coweight basis.

As a consequence of Theorem B we obtain that the size of the lower Bruhat intervals
generated by θ(λ) is a polynomial function on the coordinates of λ.

2 Lattice Formula

We refer the reader to [11, 8] for more details about Weyl groups.
For the rest of this extended abstract, we fix an irreducible (reduced, crystallographic)

root system Φ of rank n, and we denote by V be the ambient (real) Euclidean space
spanned by Φ, with inner product (−,−) : V × V → R.

Let α1, · · · , αn ∈ Φ be a choice of simple roots. The fundamental coweights ϖ∨
i are

defined by the equations (ϖ∨
i , αj) = δij. They form a basis of V. A coweight is an integral

linear combination of the fundamental coweights, and a dominant coweight is a coweight
whose coordinates in this basis are non-negative. The set of coweights will be denoted
by Λ∨.

For a root α ∈ Φ and an integer k ∈ Z, consider the hyperplane

Hα,k = {λ ∈ V | (λ, α) = k},

and the affine reflection sα,k through this hyperplane. We write si := sαi,0, for 1 ≤ i ≤ n,
and s0 := sα̃,−1, where α̃ is the highest root. The affine Weyl group W is the group
generated by S := {s0, s1, . . . , sn}. We have that (W, S) is a Coxeter system. We denote
by ≤ the (strong) Bruhat order on W: u ≤ w if u can be obtained by deleting some letters
of a reduced word for w. For J ⊂ S, the parabolic subgroup WJ is the subgroup of W
generated by J. The finite Weyl group W f is the parabolic subgroup of W generated by
S f := {s1, . . . , sn}. It has a maximal element w0 with respect to ≤.

An alcove is a connected component of V \ ∪α,kHα,k. The closure of an alcove is a
fundamental domain for the action of W on V. The fundamental alcove is the simplex

Aid := {λ ∈ V | −1 < (λ, α) < 0, ∀α = α1, . . . , αn, α̃}.

We have a bijection w 7→ Aw := wAid between W and the set of alcoves.
The coroot α∨ corresponding to a root α ∈ Φ is α∨ := 2α/(α, α). The lattice Λ∨

contains ZΦ∨ as a subgroup of finite index. Consider the group Ω := Λ∨/ZΦ∨. Define
vi = −ϖ∨

i for 1 ≤ i ≤ n and let v0 be the zero vector. Define M := {i | (ϖ∨
i , α̃) = 1}. The

set {v0, vi | i ∈ M} is a complete system of representatives of Ω. This group classifies all
parabolic subgroups of W that are isomorphic to W f . We will denote by Wσ the parabolic
subgroup corresponding to σ ∈ Ω. It is the subgroup generated by S \ {si}, where σ = vi
in Ω. From now on, we will identify Ω with the representatives {v0, vi | i ∈ M}.
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Definition 2.1. Let λ be a dominant coweight. Since Aw0 + λ is an alcove, there exists a
unique element θ(λ) ∈ W such that Aθ(λ) = Aw0 + λ. See Figure 1 for an example.

For any X ⊂ W, let A(X) be the union of alcoves corresponding to X. That is,
A(X) = ⊔x∈X Ax. The following Lemma captures the geometric intuition needed to
prove Theorem A.

Lemma 2.2. Let λ be a dominant coweight and let σ ∈ Ω such that λ ∈ σ + ZΦ∨. Then,

1. A(Wσ) = A(W f ) + σ.

2. A(θ(λ)Wσ) = A(W f ) + λ.

3. θ(λ) is maximal with respect to the Bruhat order in its double coset W f θ(λ)Wσ.

4. The maximal elements of the double cosets in
⊔

σ∈Ω W f \W/Wσ, are precisely the θ-
elements.

Definition 2.3. For any λ ∈ V, we define the orbit polytope PΦ(λ) as the convex polytope
whose vertex set is the W f -orbit of λ. See Figure 2 for an example.

As long as λ is not the zero vector, the orbit polytope is always full dimensional.
Using Lemma 2.2, we can derive the following Proposition, which describes the al-

coves corresponding to ≤ θ(λ) in terms of lattice points in PΦ(λ).

Proposition 2.4. For every dominant coweight λ, we have

A
(
≤ θ(λ)

)
=

⊔
µ∈Xλ

A(W f ) + µ, (2.1)

where Xλ = PΦ(λ) ∩ (λ + ZΦ∨).

Then, by counting alcoves in Equation (2.1), we get the Lattice Formula.

Theorem 2.5 (Lattice Formula). For every dominant coweight λ, we have

| ≤ θ(λ)| = |W f | |PΦ(λ) ∩ (λ + ZΦ∨)|. (2.2)

3 Geometric Formula

3.1 Faces of the orbit polytope and their volumes

For any X ⊂ V we denote by Conv(X) the convex hull of X. Let λ be a dominant
coweight. The faces of the orbit polytope PΦ(λ) are given by

F(w, J) = wConv(WJ · λ),

where J ⊂ S f and w ranges over any representatives of W/WJ . In particular, the facets
of PΦ(λ) containing λ, are precisely F(id, S f \ {si}) for 1 ≤ i ≤ n.
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Definition 3.1. For a subset J ⊂ S f , we define VΦ
J (λ) as the |J|-dimensional volume of

the face F(id, J) of PΦ(λ).

It will turn out that the volumes VΦ
J (λ) can be seen as polynomials, as we now

explain. For simplicity, suppose J = S f and that λ is generic1, i.e. its coordinates (in
the fundamental coweight basis) are strictly positive. We can decompose PΦ(λ) into
pyramids having the facets of PΦ(λ) as their bases, and the zero vector as their apex.
Thus we can compute the n-dimensional volume of PΦ(λ), i.e. VΦ

S f
(λ), by adding up

the volumes of these pyramids. After considering symmetries, we get the following
equation.

VΦ
S f
(λ) =

1
n

n

∑
j=1

[
W : WS f \{sj}

] (λ, ϖ∨
j )

∥ϖ∨
j ∥

VΦ
S f \{sj}(λ). (3.1)

Now let m = (m1, . . . , mn) be a n-tuple of positive integers. Define VΦ
S f
(m) :=

VΦ
S f
(m1ϖ∨

1 + . . . + mnϖ∨
n ). It is clear that the term (λ, ϖ∨

j ) (coming from the height of the

pyramids) is a polynomial in m1, . . . , mn. Since VΦ
∅ (λ) = 1, Equation (3.1) implies that

VΦ
S f
(m) is a homogeneous polynomial of degree n in m1, . . . , mn, by induction.
For any J ⊂ S f and dominant coweight λ, a similar formula to Equation (3.1) allows

us to see the volumes VΦ
J (λ) as polynomials. Furthermore, we can deduce their linear

independence. We collect this in the following Lemma (for more details, see [9, §4]).

Lemma 3.2. Let m = (m1, . . . , mn) be a n-tuple of non-negative integers. For J ⊂ S f , define
VΦ

J (m) := VΦ
J (m1ϖ∨

1 + . . . + mnϖ∨
n ).

• VΦ
J (m) is a homogeneous polynomial of degree |J| in the variables mj, for j ∈ J (identifying

J with a subset of {1, 2, . . . , n}).

• The polynomials VΦ
J (m) with J ⊂ S f are linearly independent.

Remark 3.3. To compare our results to Potnikov’s formulas for the volumes, suppose Φ
has type An. In this case, PΦ(λ) is a permutohedron. Our variables m1, . . . , mn corre-
spond to the variables u1, . . . , un in [19, §16]. There is a missing scalar factor of

√
n + 1,

which is the Euclidean volume of the fundamental parallelepiped spanned by the simple
roots, but his formulas are scaled so that its volume is 1.

1In the literature, a coweight is regular if it is not orthogonal to any root. Thus, a dominant coweight is
generic if and only if it is regular.
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3.2 Counting lattice points

For any (possibly non-pointed) cone C that includes the origin, we define its polar as

C◦ = {v ∈ V : (v, w) ≤ 0, ∀w ∈ C}.

Let Γ ⊂ V be a lattice.

Definition 3.4. Let P be a full dimensional lattice polytope, that is, a convex polytope
whose vertices lie in Γ. For a face F ⊂ P let H be its affine span, L the corresponding
linear subspace and π : V → L⊥ the orthogonal projection. We define four cones:

• The normal cone n(F,P) = cone{uG : G is a facet such that F ⊂ G}, where uG is
an outer normal for the facet G ⊂ P.

• The feasible cone f(F,P) is the polar of the normal cone n(F,P).

• The supporting cone s(F,P) := H + f(F,P). It is a translation of the feasible cone.

• The transverse cone t(F,P) = π(s(F,P)).

We say that a pointed cone C is rational if its vertex is a lattice point and every ray
(1-dimensional face) contains a lattice point. The following is the Euler-Maclaurin formula
developed by Berline and Vergne [5] (see also [2, Chapters 19-20] for an exposition).
There exists a function ν on pointed rational cones such that the following is true for all
lattice polytopes P.

|P∩ Γ| = ∑
F⊆P

ν (t(F,P)) relVol(F), (3.2)

where the sum is indexed over all nonempty faces of P. The relative volume relVol(F)
of a face is the volume on its affine span H normalized with respect to the lattice Γ ∩ L,
where L is the linear subspace parallel to H. More precisely,

relVol(F) =
Vol(F)

det(Γ ∩ L)
. (3.3)

Remark 3.5. To be more precise, Berline and Vergne’s main construction in [5] is a func-
tion µ that maps pointed rational cones to meromorphic functions [5, §4]. In this paper
we only use the function ν which is µ evaluated at zero [5, Definition 25], and then Equa-
tion (3.2) is equivalent to [5, Theorem 26] when the function h is the constant function
equal to 1.

We remark that for a single polytope P, it is obvious that there will be a formula
resembling Equation (3.2). The interesting part of Berline-Vergne’s theorem is that the
ν function satisfies Equation (3.2) for all lattice polytopes simultaneously and has cer-
tain local properties. Namely, the following operations do not change the ν value of a
transverse cone.
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i Applying a lattice-preserving orthogonal transformation.

ii Translating by a lattice element.

We use these tools to prove Theorem B, which we restate for the reader’s convenience.

Theorem 3.6 (Geometric Formula). For every irreducible root system Φ, there are unique
µΦ

J ∈ R such that for any dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂S f

µΦ
J VΦ

J (λ). (3.4)

The sketch of the proof is as follows. We focus on proving the existence of the
coefficients, since Lemma 3.2 implies uniqueness.

Let λ be a dominant coweight. The polytope QΦ(λ) := PΦ(λ)− λ is a lattice polytope
with respect to the lattice ZΦ∨. Note that the Lattice Formula, Theorem 2.5, yields

| ≤ θ(λ)| = |W f | |PΦ(λ) ∩ (λ + ZΦ∨)| = |W f | |QΦ(λ) ∩ ZΦ∨|. (3.5)

Applying Berline-Vergne formula (3.2), we get

| ≤ θ(λ)| = |W f | ∑
F⊆QΦ(λ)

ν
(
t(F,QΦ(λ))

)
relVol(F). (3.6)

The faces of the lattice polytope QΦ(λ) are GJ(w, λ) := FJ(w, λ) − λ for all pairs
w ∈ W f and J ⊂ S f . We define GJ(λ) := GJ(id, λ). Recall that a generic dominant
coweight is a positive integer linear combination of the fundamental coweights.

Lemma 3.7. Let λ be a generic dominant coweight and J ⊂ S f . Then

1. The ν value of the transverse cone of GJ(λ) in QΦ(λ) is independent of λ.

2. The ν value of the transverse cones of GJ(λ) and GJ(λ, w) are equal for all w ∈ W f .

3. For w ∈ W f we have that Vol(GJ(λ)) = Vol(GJ(λ, w)). Furthermore, relVol(GJ(λ)) =
relVol(GJ(λ, w)).

Combining Lemma 3.7 and Equation (3.6), we get the existence in the generic case.

Proposition 3.8 (Existence in the generic case). For every irreducible root system Φ, there
exists µΦ

J ∈ R such that for any generic dominant coweight λ,

| ≤ θ(λ)| = ∑
J⊂S f

µΦ
J VΦ

J (λ). (3.7)
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On the other hand, we can express QΦ(λ) as a Minkowski sum m1Q
Φ(ϖ∨

1 ) + · · ·+
mnQ

Φ(ϖ∨
n ), where λ = m1ϖ∨

1 + · · · + mnϖ∨
n . Using Equation (3.5), we get the quasi-

polynomiality of | ≤ θ(λ)| (see [15, Theorem 7]).

Proposition 3.9 (Quasi-polynomiality). For every dominant coweight λ = ∑i miϖ
∨
i (generic

or not), we have that | ≤ θ(λ)| is a quasi-polynomial in m1, . . . , mn.

We now prove the Geometric Formula.

Proof of Theorem 3.6. Proposition 3.8 together with the fact that VΦ
J are polynomials (by

Lemma 3.2) imply that | ≤ θ(λ)| = ∑ µΦ
J VΦ

J (λ) is a polynomial in the coordinates
m1, . . . , mn of λ (in the fundamental coweight basis) when they are positive integers. By
Proposition 3.9 we know that | ≤ θ(λ)| is in general a quasi-polynomial in the mi’s.
Put m = (m1, . . . , mn). We have a polynomial ∑ µΦ

J VΦ
J (m) agreeing with the quasi-

polynomial | ≤ θ(m)| on the set Zn
>0. Thus, they must agree on Zn

≥0. Therefore, formula
(3.7) holds for every dominant coweight λ, generic or not, giving the existence in every
case.

Finally, by Lemma 3.2, the volume polynomials are linearly independent hence the
coefficients µΦ

J are unique.

A direct consequence of the Geometric Formula 3.6, is that if Φ has rank n and
λ = (m1, . . . , mn) in the fundamental coweight basis, then | ≤ θ(λ)| is a polynomial of
degree n in the m1, . . . , mn. Taking the sum over a fixed rank |J| = d gives the degree d
part of the polynomial. We call the coefficients µΦ

J the geometric coefficients.

4 On the geometric coefficients µΦ
J

We finish by giving some values of the geometric coefficients. The coefficient corre-
sponding to the empty set is easily determined. Using the Geometric Formula (3.4), we
get

µΦ
∅ = ∑

J⊆S f

µΦ
J VΦ

J (0) = | ≤ θ(0)| = | ≤ w0| = |W f |.

The coefficient corresponding to the set S f also has a nice expression.

Lemma 4.1. Let Vol(Aid) be the n-dimensional volume of the fundamental alcove. Then

µΦ
S f

=
1

Vol(Aid)
.

In Table 1, we show the values of µΦ
S f

, which were computed using [8, Plates I, . . . ,
VI].
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Type An Bn Cn Dn E6 E7 E8 F4 G2

µΦ
S f

(n + 1)!√
n + 1

n!2n−1 n!2n n!2n−4 24
√

3 · 6! 288
√

2 · 7! 17280 · 8! 576 12
√

3

Table 1: Values of the geometric coefficient µΦ
S f

.

Now let Φ be the root system of type An and let D be the corresponding Dynkin
diagram. We say that J ⊆ S f is connected if the subgraph of D corresponding to J is
connected. For example, {s1, s2, . . . , sl} ⊂ S f is connected for every 1 ≤ l ≤ n.

In [9, §6.2], we compute the geometric coefficients µAn
J for connected subsets J ⊆ S f .

To achieve this, we use the following Lemma.

Lemma 4.2. For all m ∈ Z≥0, and for all 1 ≤ k ≤ n,

| ≤ θ(mϖk)| = (n + 1)! Ek,n+1(m), (4.1)

where Ek,n+1 is the Ehrhart polynomial of the hypersimplex

∆k,n+1 =
{

x ∈ [0, 1]n+1 | x1 + · · ·+ xn+1 = k
}

.

In [10], the author gave a polynomial expansion of Ek,d(m). On the other hand, the
polynomial expansion of | ≤ θ(mϖk)| ∈ R[m] via the Geometric Formula 3.6, depends
on the polynomials VAn

J (mϖk). They are of the form VAn
J (mϖk) = ck,Jm|J|, for some

number ck,J (depending on the Eulerian numbers [16, A008292]). The connectedness of
J is necessary (but not sufficient) to assure that ck,J ̸= 0. After comparing coefficients
in Equation (4.1), we get a system of linear equations which, upon solving, gives all the
geometric coefficients of connected sets.

For example, for every 1 ≤ l ≤ n,

µAn
{s1,s2,...,sl}

=
l!√

l + 1
(n + 1)

[
n + 1
l + 1

]
, (4.2)

where the brackets denote the (unsigned) Stirling numbers of the first kind [16, A008275].
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