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Abstract. Given an arbitrary Coxeter system (W, S) and a nonnegative integer m, the
m-Shi arrangement of (W, S) is a subarrangement of the Coxeter hyperplane arrange-
ment of (W, S). The classical Shi arrangement (m = 0) was introduced in the case of
affine Weyl groups by Shi to study Kazhdan-Lusztig cells for W. As two key results,
Shi showed that each region of the Shi arrangement contains exactly one element of
minimal length in W and that the union of their inverses form a convex subset of the
Coxeter complex. The set of m-low elements in W were introduced to study the word
problem of the corresponding Artin-Tits (braid) group and they turn out to produce
automata to study the combinatorics of reduced words in W.

We generalize and extend Shi’s results to any Coxeter system. First, for m ∈ N the set
of minimal length elements of the regions in a m-Shi arrangement is precisely the set of
m-low elements, settling a conjecture of the first and third authors in this case. Second,
for m = 0 the union of the inverses of the (0-)low elements form a convex subset in the
Coxeter complex, settling a conjecture by the third author, Nadeau and Williams.
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1 Introduction

Let (W, S) be a Coxeter system with length function ℓ : W → N and set of reflections
T = ∪w∈WwSw−1 = {sα | α ∈ Φ+}, where Φ+ is a set of positive roots in a root system
Φ for (W, S). As a reflection group, W acts on the Coxeter complex U (W, S) that arises
naturally from the Coxeter (hyperplane) arrangement A(W, S) = {Hα | α ∈ Φ+}. The
maximal simplices of C(W, S) are called chambers and they correspond to the connected
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components of the complement of A(W, S). The map w 7→ Cw is a bijection between W
and the set of chambers; see for instance Figure 1 and Figure 2 below.

Let m ∈ N. A positive root β ∈ Φ+ is m-small if there are at most m parallel, or ul-
traparallel, hyperplanes separating Hβ from the fundamental chamber Ce (not counting
Hβ). Denote by Σm the set of m-small roots. Small roots were introduced by Brink and
Howlett to prove that any finitely generated Coxeter system is automatic [2]; a key and
remarkable result in their article was to prove that Σ0 is a finite set. Later, Fu [6] proved
that Σm is finite for all m ∈ N. The sets of m-small roots are the building blocks of a
family of regular automata that recognize the language of reduced words in (W, S).

The m-Shi arrangement Shim(W, S) of (W, S) is the hyperplane subarrangement of
A(W, S):

Shim(W, S) = {Hα | α ∈ Σm}.

The regions of Shim(W, S) are union of chambers and define therefore an equivalence
relation ∼m on W. It was conjectured in [5, Conjecture 2] that each equivalence class
under ∼m contains a unique minimal length element and that the set of these minimal
length elements is the set of m-low elements. An element w ∈ W is m-low if the inversion
set Φ(w) of w is spanned by the m-small roots it contains. The set Lm of m-low elements
turns out to be a finite Garside shadow [5, 3], that is, it shadows a finite Garside family
in a corresponding Artin-Tits group.

The following two theorems are the main results of this abstract: the first theorem
settles [5, Conjecture 2] and the second settles [7, Conjecture 3].

Theorem 1.1. Let (W, S) be a Coxeter system and m ∈ N.
1. Each region of Shim(W, S) contains a unique element of minimal length.
2. The set of the minimal length elements of Shim(W, S) is equal to the set Lm of m-low

elements.

A noteworthy consequence of the Theorem 1.1 and of the fact that Lm is a Garside
shadow is that if the join z (under the right weak order) of two minimal elements of
Shim(W, S) exists, then z is also the minimal element of a region of Shim(W, S).

Theorem 1.2. Let (W, S) be a Coxeter system. The union of the chambers Cw for w−1 ∈ L0 is a
convex set.

These theorems are illustrated in Figures 1 and 2. The proofs of these theorems de-
pend on the sandwich property of short inversion posets, discussed in §3. The first author
showed in 2019 that the inversion set Φ(w) of w ∈ W is spanned by its set of short in-
versions Φ1(w). We endow Φ1(w) with a poset structure arising from the configuration
of maximal dihedral reflection subgroups: α ≺̇w β if β is not in the simple system of
the maximal dihedral reflection subgroup containing α, β ∈ Φ1(w), see §3.2. Then we
prove that any short inversion β ∈ Φ1(w) is sandwiched between a left-descent root and a
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(a) The 1-Shi arrangement
(with the 0-Shi arrangement in
darker blue)

(b) The 1-Shi polyhedron (with
the 0-Shi polyhedron inside)

Figure 1: The 1-Shi arrangement and the 1-Shi polyhedron for B̃2.
right-descent root, roots naturally defined from the left and right descent sets of w; this
is Theorem 3.6, which is the core result of this abstract. We emphasize that these posets
are new and have been very useful in analyzing elements of W.

In order to properly introduce m-Shi arrangements in as many realizations of the
Coxeter arrangement as possible (e.g. Tits cones, Davis complexes, Euclidean and Hy-
perbolic spaces, etc.), the full paper uses the notion of chambered sets. Our discussion of
chambered sets is omitted in the extended abstract.

Finally, in §5, we introduce extended Shi arrangements and we focus on Theorem 1.1
and Theorem 1.2. Combinatorics of roots and reduced words are surveyed in §2 while
m-small roots and m-low elements are discussed in §4.

Let us give a bit of history about the m-Shi arrangement. For more details and refer-
ences, see [4]. In 1986, Shi introduced the Shi arrangement Shi(W, S) = Shi0(W, S) in the
case of irreducible affine Weyl groups to study Kazhdan-Lusztig cells for W. Surprising
connections to Shi arrangements have been studied: to ad-nilpotent ideals of Borel sub-
algebras, and to Catalan arrangements, for example. In 1988, Shi proved a conjecture by
Carter on the number of sign-types of an affine Weyl group. In order to prove that con-
jecture, Shi enumerated the number of regions in Shi0(W, S). In particular, Shi proves
that each region of the Shi arrangement contains a unique minimal element and that
the union of the chambers corresponding to the inverses of those minimal elements is a
convex subset of the Euclidean space. Theorems 1.1 and 1.2 are a generalization of both
results to arbitrary Coxeter systems. Notice that in the case of affine Coxeter systems
and for m = 0, Theorem 1.1 was proven by Chapelier-Laget and the second author, while
for rank 3 and m = 0 it was proven by Charles. Osajda and Przytycki independently, in
2022, have a proof of Theorem 1.1(1) in the case m = 0,

As far as we know, the m-(extended) Shi arrangements were defined for affine Coxeter
systems in Armstrong’s thesis, but were implicit in Athanasiadis’s work on generalized
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(a) The 0-Shi arrangement. The low ele-
ments are shaded.

(b) The 0-Shi polyhedron

Figure 2: The 0-Shi arrangement and polyhedron of the Coxeter system with Coxeter
graph given in the upper left.

Catalan numbers. In the extended case, the regions in Shim(W, S) were first enumerated
by Yoshinaga using techniques from representation theory. In his thesis, Thiel gives a
direct proof by extending Shi’s result to any m in the case of affine Coxeter systems.

Theorem 1.1 shows that Thiel’s minimal elements for Shim(W, S) are precisely the
m-low elements. We recover Thiel’s results as a direct consequence of the proof of The-
orem 1.2.

Theorem 1.3. If (W, S) is of affine type, then the union of the chambers Cw for w−1 ∈ Lm is a
convex set.

Theorem 1.3 is not true for an indefinite Coxeter system, i.e., neither affine nor fi-
nite; for a counterexample see Figure 4. There are many new questions about the Shi
arrangement in indefinite type; see [4] for a few of them.

Acknowledgements

The authors are grateful to Christian Stump, Vic Reiner, Nathan Williams, James Parkin-
son, Franco Saliola, and the referees.

2 Preliminaries

Fix a Coxeter system (W, S) with length function ℓ : W → N; the rank of (W, S) is the
cardinality of S. We assume the reader familiar with the basics of the theory of Coxeter
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groups; see for instance [8, 1].

Combinatorics of reduced words We say that a word s1 . . . sk (si ∈ S) is a reduced word
for w ∈ W if w = s1 . . . sk and k = ℓ(w). For u, v, w ∈ W, we say u is a prefix of w if a
reduced word for u can be obtained as a prefix of a reduced word for w; v is a suffix of w
if a reduced word for u can be obtained as a suffix of a reduced word for w; and w = uv
is a reduced product if ℓ(w) = ℓ(u) + ℓ(v). More generally, we say that w = u1 . . . uk is a
reduced product if ℓ(w) = ℓ(u1) + · · ·+ ℓ(uk), ui, w ∈ W.

Weak and Bruhat orders This suffix/prefix terminology is best embodied by the weak
order. The right weak order is the poset (W,≤R) defined by u ≤R w if u is a prefix of w.
The right weak order gives a natural orientation of the right Cayley graph of (W, S): for
w ∈ W and s ∈ S, we orient the edge w → ws if w ≤R ws.

Recall that the Bruhat order is the poset (W,≤) defined as follows: u ≤ w if and only if a
word for u can be obtained as a subword of a reduced word for w. We denote covering
in the Bruhat order by x ◁ y.

Root system Please see [8] for information on geometric representations of (W, S), the
symmetric bilinear form B, and root systems. We note that (1) if B is positive definite,
then W is finite; if it is positive semi-definite but not positive definite, then W is affine;
and otherwise W is indefinite; and (2) there is a bijection between the positive roots Φ+

and the reflections T.

Depth of positive roots The depth on Φ+ [2] is the function dp : Φ+ → N defined by:

dp(β) = min{ℓ(g) | g(β) ∈ ∆}.

There is a recursion for depth [1, Lemma 4.6.2] and dp(αs) = 0 for all s ∈ S. The depth
may be seen as measuring how far a positive root is from ∆ in the orbit Φ = W(∆). There
are many different depths and they are not equivalent. In this article we also consider
the ∞-depth. For more on depths, lengths and weak orders on root systems, see [5, §5.1].

Inversion sets The inversion set Φ(w) of w ∈ W is defined by:

Φ(w) = Φ+ ∩ w(Φ−) = {β ∈ Φ+ | ℓ(sβw) < ℓ(w)}.

Its cardinality is ℓ(w) and is sometimes denoted in the literature by N(w) or inv(w).

Reflection subgroups We end this section by recalling some useful facts about reflection
subgroups and, in particular, about maximal dihedral reflection subgroups [5, §2.8]. A
reflection subgroup W ′ of W is a subgroup W ′ = ⟨sβ | β ∈ A⟩ generated by the reflections
associated to the roots in some A ⊆ Φ+. We set ΦW ′ := {β ∈ Φ | sβ ∈ W ′} and ∆W ′ :=
{α ∈ Φ+ |Φ(sα)∩ΦW ′ = {α}}. The first author showed in 1990 that ΦW ′ is a root system
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in (V, B) with simple root system ∆W ′ and simple reflections χ(W ′) := {sα | α ∈ ∆W ′}.
There are corresponding positive roots: Φ+

W ′ = ΦW ′ ∩Φ+; both notions depend on (W, S)
and not just W.

Maximal dihedral reflection subgroups A reflection subgroup W ′ of rank 2 is well-
known to be isomorphic to a dihedral group and is so called a dihedral reflection subgroup.
This following result gives a criterion for comparing depths of roots.

Proposition 2.1. Let α, β ∈ Φ+. Assume there is a dihedral reflection subgroup W ′ such that
such that α ∈ ∆W ′ and β ∈ Φ+

W ′ \ ∆W ′ , then dp(α) < dp(β).

A dihedral reflection subgroup W ′ is a maximal dihedral reflection subgroup if it is not
contained in any other dihedral reflection subgroup but itself. Our partial order on the
short inversions is based on maximal dihedral reflection subgroups. The following result
is useful: it gives the form of inversion sets in maximal dihedral reflection subgroup.

Proposition 2.2. Let W ′ be a maximal dihedral reflection subgroup. The inversion set of u ∈ W ′,
u ̸= e, is of the form ΦW ′(u) = coneΦ(α, β) with α ∈ ∆W ′ and β ∈ Φ+

W ′ .

Any dihedral reflection subgroup is contained in a unique maximal dihedral reflection
subgroup. In particular, for α, β ∈ Φ such that Rα ̸= Rβ, the dihedral reflection sub-
group ⟨sα, sβ⟩ is contained in the unique maximal dihedral reflection subgroup Mα,β,
with root subsystem Φα,β = (Rα ⊕ Rβ) ∩ Φ, and simple system ∆Mα,β . For simplicity, if
s = sα ∈ T and t = sβ ∈ T, we write Ms,t = Mα,β.

Remark 2.3. The finite maximal dihedral reflection subgroups of (W, S) are precisely the
finite parabolic subgroups of rank 2, that is, the conjugates of the standard parabolic sub-
groups Ws,t = ⟨s, t⟩ for s, t ∈ S distinct such that the order ms,t of st is finite. Conversely,
any conjugate of a rank 2 finite parabolic subgroup is maximal [3, Theorem 3.11(b)].

3 Short inversion posets

Among all inversions of an element of W, the short inversions span all the others. The
key to proving Theorem 4.3 is to exhibit an order on the short inversions and to show
that any short inversion is sandwiched between a left descent-root and a right descent-root.

3.1 Short inversions and descent roots

We think of Φ(w) as a polyhedral cone in Φ ⊆ V since Φ(w) = coneΦ(Φ(w)). The set of
short inversions of Φ(w) is the set

Φ1(w) = {β ∈ Φ+ | ℓ(sβw) = ℓ(w)− 1} = {β ∈ Φ+ | sβw ◁ w} ⊆ Φ(w).
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The first author showed in 1994 that Φ1(w) is a basis of cone(Φ(w)): the set of extreme
rays of coneΦ(Φ(w)) is indeed {R≥0β | β ∈ Φ1(w)}.

Proposition 3.1. Let w ∈ W and α, β ∈ Φ1(w) with α ̸= β. Then α ∈ ∆Mα,β or β ∈ ∆Mα,β . In
particular: (1) if ∆Mα,β = {α, α′} and β ̸= α′, then α′ /∈ Φ(w); or (2) if ∆Mα,β = {α, β}, then
Φ+

Mα,β
⊆ Φ(w) and Mα,β is finite.

The well-known left and right descent sets of w ∈ W have their natural counterparts
in Φ1(w). The left descent set DL(w) = {s ∈ S | sw ◁ w} is in bijection with the set of left
descent-roots: ΦL(w) = Φ(w) ∩ ∆. The right descent set DR(w) = {s ∈ S | ws ◁ w} is in
bijection with the set of right descent-roots: ΦR(w) = {−w(αs) | s ∈ DR(w)}.

3.2 Short inversion posets

Let w ∈ W. For α, β ∈ Φ1(w), we write α ≺̇w β if β /∈ ∆Mα,β . By Proposition 3.1, this
is equivalent to α ∈ ∆Mα,β and β /∈ ∆Mα,β . Proposition 3.2 is a direct consequence of
Proposition 2.1.

Proposition 3.2. Let w ∈ W and α, β ∈ Φ1(w). If α ≺̇ β, then dp(α) < dp(β).

For w ∈ W, we define the relation ⪯w to be the transitive and reflexive closure of ≺̇w,
which turns out to be a partial order on Φ1(w).

Proposition 3.3. The relation ⪯w is a partial order on Φ1(w). Moreover, for any reduced
word w = s1 . . . sk consider the following total order ≤ on Φ(w): αs1 < s1(αs2) < · · · <
s1 . . . sk−1(αsk). Then α ⪯w β implies α ≤ β and dp(α) ≤ dp(β) for any α, β ∈ Φ1(w).

Remark 3.4. (1) The relation ≺̇w is not the cover relation for ⪯w. (2) The total order on
Φ(w) in the statement of Proposition 3.3 is in fact the restriction of an admissible order on
Φ+ to Φ(w). Admissible orders on Φ+ are in bijection with reflection orders, which plays
a role in Kazhdan-Lusztig theory

Example 3.5. Consider (W, S) with S = {1, 2, 3, 4} and the Coxeter graph in Figure 3.
This is an indefinite Coxeter system. Let w = 1234232314, so that ΦL(w) = {α1},
ΦR(w) = {123432321(α4)} and Φ1(w) = {α1, 1(α2), 31(α2), γ = 1234232(α1), 1(α4), β =
123432321(α4)}. The Hasse diagram of the short inversion poset of w is in Figure 3.

We state now the main result of this section, the sandwich theorem.

Theorem 3.6. Let w ∈ W. For the poset (Φ1(w),⪯w), the minimal elements are the left-descent
roots in ΦL(w) and the maximal elements are the right-descent roots in ΦR(w). More precisely,
for any β ∈ Φ1(w) there is α ∈ ΦL(w) and γ ∈ ΦR(w) such that α ⪯w β ⪯w γ.

The key to proving Theorem 3.6 is to explicitly construct, for w ∈ W and for each
β ∈ Φ1(w) \ ΦL(w), a short inversion α ∈ Φ1(w) such that α ≺̇w β. For such a β ∈
Φ1(w) \ ΦL(w), we consider g ∈ W such that g(β) ∈ ∆ and ℓ(g) = dp(β), which exists
by definition of the depth.
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(a) The Coxeter graph

α1
d∞ = 0

1(α2) d∞ = 0

31(α2) d∞ = 0

γ
d∞ = 5

1(α4)d∞ = 0

β

d∞ = 7

(b) The short root poset for w.

Figure 3: Observe that any short inversion is sandwiched between a left descent-root
and a right descent-root in the short root poset. To the side of each root is its ∞-depth.
See Example 3.5 and Section 4.1.

4 m-Small roots and m-low elements

Let (W, S) be a Coxeter system and m ∈ N. In this section, we provide, as a consequence
of Theorem 3.6, a key characterization of m-low elements: an element w ∈ W is m-low if
and only if ΦR(w) consists of m-small roots, see Theorem 4.3 below.

4.1 Dominance order, dominance-depth, and m-small roots

Defined by Brink and Howlett [2], the dominance order is the partial order ⪯dom on Φ+:

α ⪯dom β ⇐⇒ (∀w ∈ W, β ∈ Φ(w) =⇒ α ∈ Φ(w)).

In the same paper, they introduced, in relation to the dominance order, another depth-
statistic: the dominance-depth or ∞-depth dp∞ : Φ+ → N is defined by

dp∞(β) = |{α ∈ Φ+ \ {β} | α ≺dom β}|.

In particular, dp∞(αs) = 0 for all s ∈ S and there is a recurrence analogous to the
recursion for depth. For m ∈ N, the set Σm of m-small roots is the set of positive roots that
dominate at most m distinct proper positive roots; that is, Σm = {β ∈ Φ+ | dp∞(β) ≤ m}.
The set Φ+ is then

⋃
m∈N Σm. The m-small roots are defined in the introduction in

relation with parallelism. Brink and Howlett [2] (for m = 0) and Fu [6] (for all m) proved
that the set Σm is finite for all m ∈ N and finite S, which implies that the sets of m-small
roots provides a decomposition of the positive roots into finite sets whenever S is finite.

4.2 m-small inversion sets and m-low elements

The m-small inversion set of w ∈ W is the set:

Σm(w) = Φ(w) ∩ Σm.
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The set Lm of m-low elements is, see [5] for more details:

Lm = {w ∈ W | Φ(w) = coneΦ(Σ(w))} = {w ∈ W | Φ1(w) ⊆ Σm}.

Example 4.1. (1) If W is finite, then Σm = Σ0 = Φ+ for all m ∈ N. Hence Lm = L0 = W.
(2) The elements of the set L0 in affine type B̃2 are the darker blue regions in Figure 1 (a),
and the elements of L1 are shaded a lighter blue. (3) The set L0 of a non-affine Coxeter
arrangement consists of the elements in the blue regions in Figure 2.

If S is finite, the set Σm is finite and therefore the set Lm is also finite. Actually, if S is
finite, the set of m-low elements is a finite Garside shadow, that is, Lm contains S and is
closed under taking suffixes and under taking join in the right weak order.

The key notion to prove that Lm is a Garside shadow is bipodality: a set A ⊆ Φ+

is bipodal if for any β ∈ A and maximal dihedral reflection subgroup W ′ such that
β ∈ ΦW ′ \ ∆W ′ we have ∆W ′ ⊆ A; see [5, 3] for more information. Because Lm is bipodal
and a Garside shadow, we have the following useful corollary.

Corollary 4.2. Let w ∈ W, α, β ∈ Φ1(w) with α ⪯w β, then dp∞(α) ≤ dp∞(β).

As a direct consequence of Theorem 3.6 (the sandwich theorem) and Corollary 4.2, we
obtain the following theorem. Together with Corollary 4.2, it establishes the relationship
between our partial order ⪯w on Φ1 and the ∞-depth.

Theorem 4.3. Let w ∈ W and set dw = max{dp∞(γ) | γ ∈ ΦR(w)}. (1) The ∞-depth on
Φ1(w) is maximum on ΦR(w): dp∞(β) ≤ dw, for all β ∈ Φ1(w). (2) The element w is a
dw-low element; (3) For m ∈ N, w ∈ Lm if and only if m ≥ dw.

The following corollary proves [5, Conjecture 2], which is key to proving Theorem 1.1.

Corollary 4.4. Let m ∈ N. The map λm : Lm → Λm = {Σm(w) | w ∈ W}, defined by
w 7→ Σm(w), is a bijection.

The next proposition is crucial to proving Theorem 1.2 and Theorem 1.3. For their
proofs, we need the existence of a supporting hyperplane of Csw which is not m-low and
which separates Csw from Ce.

Proposition 4.5. Let m ∈ N, w ∈ Lm and s ∈ S. Then sw ∈ Lm+1. Moreover: (1) sw ∈
Lm+1 \ Lm if and only if w < sw and there is r ∈ DR(w) such that dp∞(−sw(αr)) = m + 1.
(2) Under the conditions above, αs ≺dom −sw(αr) for any r ∈ DR(w) with dp∞(−sw(αr)) =
m + 1.

5 Extended Shi arrangements and low elements

Let (W, S) be a Coxeter system and m ∈ N. In this section we first introduce extended
Shi arrangements and discuss Theorem 1.1 and Theorem 1.2. We also discuss how we
obtained, as a byproduct, a direct proof of Thiel’s Theorem 1.3. Then we provide in a
counterexample to the convexity of the inverses of Lm if m > 0 and (W, S) is indefinite.
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5.1 Extended Shi arrangements and proof of Theorem 1.1

Let m ∈ N. The (extended) m-Shi arrangement Shim(W, S) is the set of m-small hyperplanes:

Shim(W, S) = {Hβ | β ∈ Σm},

which consists of the hyperplanes in A that are separated from the fundamental chamber
C by at most m parallel hyperplanes.

The closed regions for Shim(W, S) are called the m-Shi regions. The corresponding
equivalence relation ∼Σm on W is abbreviated ∼m in this case. We have u ∼m v if and
only if Cu and Cv are contained in the same m-Shi region.

Example 5.1. See Figures 1(a) and 2(a) where the blue chambers correspond to the m-
low elements and are the unique minimal chamber of their corresponding m-Shi region.
For m = 0, observe that the small hyperplanes (thick blue lines) do not have any other
hyperplanes between them and C. In Figure 1, the 1-small hyperplanes consist of the
small hyperplanes plus hyperplanes that have exactly one hyperplane between them
and C.

Proposition 5.2. For m ∈ N and u, v ∈ W, we have u ∼m v ⇐⇒ Σm(u) = Σm(v). In other
words, two chambers Cu and Cu are in the same m-Shi region if and only if u and v have the
same m-small inversion set.

In affine Weyl group and in the case m = 0, the map w 7→ Σ0(w) from W to Λ0 is
the generalization of Shi’s admissible sign type map. The following theorem proves in
particular Theorem 1.1.

Theorem 5.3. Let m ∈ N. For any w ∈ W, there is a unique m-low element u ∈ Lm such that
u ∼m w. Moreover u ≤R w. In particular, each region of Shim(W, S) contains a unique element
of minimal length, which is a low element.

Remark 5.4. (1) The proof of Theorem 5.3 depends on the bijection between m-low
elements and m-small short inversions given in Corollary 4.4. (2) In the terminology of
Parkinson and Yau, Theorem 5.3 means that any m-Shi arrangement is gated and that Lm
is the set of gates of Shim(W, S).

5.2 The m-Shi polyhedron and convexity

We now discuss the proofs of Theorem 1.2 and Theorem 1.3. Let m ∈ N. Consider the
set

Bm = {x−1(αs) | x ∈ Lm, s ∈ S, sx /∈ Lm}.

Since the set Lm is a Garside shadow, it is stable under taking suffixes, so s ∈ S \ DL(x)
in the definition above. The set Bm ⊆ Φ+ and is finite if S is.
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Definition 5.5. We define the m-Shi polyhedron to be the convex set:

Sm =
⋂

β∈Bm

H+
β .

In the case of irreducible affine Weyl groups, Shi proved in in 1987 that S0 is a
simplex with |S| half-spaces in the above definition. See Figures 1 (b) and 2 (b) where
the shaded regions correspond to the corresponding m-Shi polyhedron.

The following two theorems are Theorem 1.2 and Theorem 1.3.

Theorem 5.6. The 0-Shi polyhedron is:

S0 =
⋃

w∈L0

Cw−1 .

Theorem 5.7. Let (W, S) be an affine Coxeter system and let m ∈ N. The m-Shi polyhedron is
the union of Cw−1 for w ∈ Lm.

The proof that the m-Shi polyhedron is contained in the union of Cw−1 for w ∈ Lm is
relatively straightforward and is a consequence of Lemma 5.8.

Lemma 5.8. Let m ∈ N and w ∈ W such that Φ(w−1) ∩ Bm = ∅. Then w ∈ Lm. In other
words: Lm ⊇ {w ∈ W | Φ(w−1) ∩Bm = ∅}.

Proving that the union of Cw−1 for w ∈ Lm is contained in the Shi polyhedron is
trickier and is not true in general for m > 0 in indefinite types–see Remark 5.9. It
amounts to showing Lm ⊆ {w ∈ W | Φ(w−1) ∩ Bm = ∅}. The proof of this boils down
to showing that if we have a w ∈ W such that Φ(w−1) ∩ Bm ̸= ∅, then w is not low.
Here we need the existence of a supporting hyperplane which is not m-low (and some
other conditions) and use Proposition 4.5 to obtain it.

Remark 5.9. In the proof of Theorem 5.7, we needed and proved the following property
: if α, β, γ ∈ Φ+ are such that α ⪯dom γ and β ⪯dom γ, then either α ⪯dom β ⪯dom γ or
β ⪯dom α ⪯dom γ. This property arises from the transitivity of the parallelism relation
in Euclidean geometry. Unfortunately, it is not true in non-Euclidean space.

Convexity and extended Shi arrangements in indefinite Coxeter systems There can be
no result analogous to Theorem 1.2 for all indefinite systems and m > 0. For instance,
consider (W, S) be the indefinite system whose Coxeter graph is given in Figure 4. The
red hyperplanes on the right do form a polyhedron, but C21 and C23 are not enclosed in
it (light gray Figure 4(b)), although 12 and 32 are 1-low. The union of Cw−1 for w ∈ L1 is
not even convex, since C213 (red) is not in the union as 312 = 132 /∈ L1.
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(a) The 0 and 1-Shi arrangements

2(Hα3)

2(Hα1)

12(Hα1)

12(Hα3)

32(Hα1)

32(Hα3)

132(Hα1)

132(Hα3)

(b) The 0- and 1-polyhedron.

Figure 4: The 0 and 1-Shi arrangements and a counterexample of convexity for the
indefinite system whose Coxeter graph is in the top middle of the picture. See Sec-
tion 5.2.
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