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Enumerating the faces of split matroid polytopes
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Abstract. Computing f -vectors of polytopes is in general hard, and only little is known
about their shape. We initiate the study of properties of f -vector of matroid base
polytopes, by focusing on the class of split matroids, i.e., matroid polytopes arising
from compatible splits of a hypersimplex. Unlike valuative invariants, the f -vector
behaves in a much more unpredictable way, and the modular pairs of cyclic flats play
a role in the face enumeration. We give a concise description of how the computation
can be achieved without performing any convex hull or face lattice computation. As
applications, we deduce formulas for sparse paving matroids and rank 2 matroids.
These are two families that appear in other contexts within combinatorics.

Keywords: f -vectors, matroid polytopes, face numbers, split matroids, paving ma-
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1 Introduction

A question that arises naturally in the study of a convex polytope P ⊆ Rn is how many
faces of each dimension P has. The f -vector of P is defined by

f (P) := ( f0, f1, . . . , fd−1, fd),

where fi := #{i-dimensional faces of P} for each i ∈ {0, . . . , d} and d := dimP. In
particular, the number of vertices of P is just f0, the number of facets of P is fd−1, and
fd = 1.

The difficulty of calculating the f -vector may vary drastically depending on the poly-
tope P, on the properties it possesses, or on how it is described. For some concrete
examples of the computation of f -vectors and certain related problems, see [21]. The
family of possible vectors arising as the f -vector of a polytope is notoriously hard, and
their classification is open in dimensions as low as four, see [23]. Even in the case of
0/1-polytopes of fixed dimension, although the set of possible f -vectors is finite, much
remains to be discovered, see [22].
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In this article we will initiate the study of the explicit face enumeration of matroid
polytopes, by focusing on the well-structured subclass of (elementary) split matroids.
There are many equivalent ways of introducing these matroids. A matroid is elementary
split whenever it does not contain a minor isomorphic to U0,1 ⊕U1,2 ⊕U1,1. Similarly, one
may define the class of split matroids via five excluded minors [14, 7]. When the matroid
is connected, these two notions agree. Geometrically, a connected matroid M is split
whenever every pair of facet defining hyperplanes do not intersect in the interior of the
hypersimplex containing the matroid polytope P(M).

The class of split matroids was introduced by Joswig and Schröter in [14] to study
tropical linear spaces. They have received considerable attention in the past few years,
including a forbidden minor characterization [7], hypergraphs descriptions [5], Tutte
polynomial inequalities [11], subdivisions and computation of valuations [10], and con-
jectures about exchange properties on the bases [6] which are related to White’s conjec-
ture.

The face structure of some special classes as positroids and lattice path matroids
appeared in previous work, however without an explicit enumeration. Even though the
f -vector of the matroid base polytope constitutes an invariant of the matroid M under
isomorphisms, it is not valuative; see Example 2.2 below. This makes its computation
considerably subtler and difficult. In particular, for the case of split matroids we require
a non-trivial modification of the machinery presented in [10].

One important reason why split matroids deserve to be studied is that they encom-
pass the classes of paving and copaving matroids. A long-standing conjecture often
attributed to Crapo and Rota, appearing in print in [16], predicts that asymptotically
almost all matroids are sparse paving. There is some evidence supporting this assertion
[18], but another intriguing conjecture affirms that even restricting to the enumeration
of non sparse paving matroids, the class of split matroids will continue to be predominant
[10, Conjecture 4.10].

As of today, the problem of face enumeration of matroid polytopes has not been
approached systematically in the literature, and to the best of our knowledge there are
no prior articles addressing their computation. Some articles such as [15, 19, 3, 12, 1]
may be relevant, as they discuss other aspects indirectly related to the face enumeration
for (some classes of) matroid polytopes.

In particular, perhaps as a reminiscence of the situation for polytopes in general (and
even for 0/1-polytopes), questions about properties of f -vectors of matroid polytopes
are widely open.

Summary of results

As mentioned before, the fact that the face numbers are not valuations makes the compu-
tation of the f -vector of matroid polytopes a delicate task. In the case of split matroids,
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we need more data than just the number of cyclic flats of each rank and size. Some
information on their pairwise intersection is necessary.

In order to express the f -vector of a polytope P in a more compact fashion, we will
often refer to the f -polynomial, which is defined via:

fP(t) :=
d

∑
i=0

fi · ti.

Following the notation and terminology of [10], whenever we have a matroid M of rank k
and cardinality n, we will denote by λr,h the number of stressed subsets with non-empty
cusp that M has. Although one of the main results of that article establishes that the
numbers λr,h are enough to compute any valuative invariant on M, we need further data
to compute the f -vector.

For a matroid M as before, we will denote by µα,β,a,b the number of modular pairs of
cyclic flats {F1, F2} such that a = |F1 ∖ F2|, b = |F2 ∖ F1|, α = rk(F1)− rk(F1 ∩ F2), and
β = rk(F2)− rk(F1 ∩ F2); see also equation (⋆) below.

The following constitutes the main result of this article and is stated as Theorem 2.4
further below. It tells us that the numbers µα,β,a,b are the precise additional datum needed
to perform the computation of the f -vector of a split matroid polytope. Moreover, the
statement tells us concretely how to calculate the number of faces of given dimension.

Theorem Let M be a connected split matroid of rank k on n elements. The number of faces of its
base polytope P(M) is given by the polynomial

fP(M)(t) = f∆k,n(t)− ∑
r,h

λr,h · ur,k,h,n(t)− ∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t)

where the first sum ranges over all values with 0 < r < h < n and the second sum ranges over
the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

In the above theorem, the expressions ur,k,h,n(t) and wα,β,a,b(t) are polynomials which
depend only on their subindices. We present in Propositions 2.6 and 2.7 explicit (but
complicated) formulas for them which can be used to calculate the face numbers effort-
lessly. A formula for the f -vector of the hypersimplex ∆k,n is also given explicitly in
Example 2.1. In particular, the entire calculation can be done bypassing the problem of
building costly face lattices or computing convex hulls.

As two direct but interesting applications of our result, we particularize it to the
classes of sparse paving and rank 2 matroids. The first is a class that made a prominent
appearance in the theory of the extension complexity of independence polytopes [20].
The second bears a relevant connection with the theory of edge polytopes of graphs [17].
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2 The number of faces of split matroids

2.1 The set up

Throughout this extended abstract we will assume that the reader is familiar with the
usual terminology and notation in matroid theory. For the notions and machinery in-
troduced very recently, in particular about stressed subsets, relaxations, and cuspidal
matroids we refer the reader to our previous article [10, Sections 3–4]. Regarding split
matroids and elementary split matroids the reader can consult the same article as well
as [14, 5]. However, basic knowledge on polytopes should be enough to follow the
arguments and methods in this manuscript.

For a d-dimensional polytope P we denote by f (P) := ( f0, . . . , fd) its f -vector, and by

fP(t) :=
d

∑
i=0

fi ti

its f -polynomial. In both cases, fi denotes the number of i-dimensional faces of P. Notice
that we omit the inclusion of f−1 := 1 for the empty set in both the f -vector and the
f -polynomial, but we do include fd = 1 for the polytope itself.

Essential notation Following our prequel [10], whenever we have a matroid M, unless
specified otherwise, the rank of M is denoted by k and the size of its ground set is
denoted by n. We reserve the letters r and h for the rank and the size of stressed subsets
that M may possess.

Note that under the assumption of being connected the classes of split matroids and
elementary split matroids coincide [5, Theorem 11]. Since the base polytope of a direct
sum of matroids M1 ⊕M2 is the cartesian product of P(M1) and P(M2), the f -vector
of any disconnected split matroid can be recovered from the f -vector of the connected
components, all of which are split as well.

The most basic example of a matroid polytope is the hypersimplex ∆k,n, the matroid
base polytope of the uniform matroid Uk,n of rank k on n elements.

Example 2.1 The face enumeration of hypersimplices is encoded in the following f -
polynomial:

fP(Uk,n)
(t) = f∆k,n(t) =

(
n
k

)
+

n−1

∑
i=1

(
n

i + 1

) i

∑
j=1

(
n − i − 1

k − j

)
· ti .

For a detailed proof see for example [13, Corollary 1.4].

As we will see now, the assignment M 7→ fP(M)(t) is an invariant of the matroid M

that fails to be valuative. Hence its computation is a more delicate task, even for the
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case of paving or split matroids. In these cases, we cannot rely on the strength of [10,
Theorem 6.6] — that result asserts that the evaluation of a valuative invariant on a split
matroid M can be achieved by knowing relatively little about the matroid M, consisting
of its rank k, its size n, and the parameters λr,h. If one is interested in knowing the
f -vector of P(M), the first problem one faces is identifying what additional matroid data
is required.

Example 2.2 Consider the four matroids U3,6, M, N1 and N2 with ground set {1, . . . , 6}
and rank three, whose families of bases are given as follows:

B(U3,6) :=
(
[6]
3

)
, B(N1) :=

(
[6]
3

)
∖ {{1, 2, 3}, {4, 5, 6}}

B(M) :=
(
[6]
3

)
∖ {{1, 2, 3}}, B(N2) :=

(
[6]
3

)
∖ {{1, 2, 3}, {3, 4, 5}}.

The f -vectors of their base polytopes are respectively:

f (P(U3,6)) = (20, 90, 120, 60, 12, 1), f (P(N1)) = (18, 72, 102, 60, 14, 1),
f (P(M)) = (19, 81, 111, 60, 13, 1), f (P(N2)) = (18, 72, 101, 59, 14, 1).

All of these matroids are sparse paving. In particular, the two matroids N1 and N2
have, e.g., the same Tutte polynomial and the same Ehrhart polynomial — in fact, via
[10, Corollary 6.7] any valuative invariant on these two matroids yields the same result.
However, observe that their f -vectors differ in the third and the fourth entries.

2.2 Cuspidal matroids

By using [10, Corollary 6.2], we see that the intersection of the hypersimplex ∆k,n with
the half-space of a single split hyperplane leads to the polytope:

P(Λk−r,k,n−h,n) =

{
x ∈ ∆k,n :

h

∑
i=1

xi ≤ r

}
. (2.1)

for appropriate values r and h. This is the base polytope of the cuspidal matroid
Λk−r,k,n−h,n, a matroid having exactly three cyclic flats: the empty set, the entire ground
set, and one proper cyclic flat having size h and rank r. For the purposes of this paper,
the reader may regard equation (2.1) as the definition of cuspidal matroids.

Let us introduce some notation that will help us formulate later our main results in
a more compact way:

ur,k,h,n(t) := f∆k,n(t)− fP(Λk−r,k,n−h,n)
(t). (2.2)
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A non-obvious property is that some of these coefficients may be negative while other
are positive — moreover, the actual sign of each individual coefficient a priori depends
on the four parameters r, k, h, n.

Before we go on, let us introduce a second polynomial, which will play an important
role in the sequel. For fixed numbers 0 < α < a and 0 < β < b let us define,

wα,β,a,b(t) := f∆α+β,a+b(t)− f∆α,a(t) · f∆β,b(t)− uα,α+β,a,a+b(t)− uβ,α+β,b,a+b(t)

= fP(Λβ,α+β,b,a+b)
(t) + fP(Λα,α+β,a,a+b)

(t)− f∆α+β,a+b(t)− f∆α,a(t) · f∆β,b(t).

Later, in Proposition 2.6, we provide a compact formula for the polynomials wα,β,a,b(t)
and a formula for the polynomials ur,k,h,n(t) in Proposition 2.7 both of which can be
used to calculate these polynomials, bypassing the computation of f -vectors of cuspidal
matroids using the polytopes themselves.

Remark 2.3 The intuition of why it is reasonable to consider and define the complicated
expression above stems from [10, Example 6.5]. As follows from the explanation there,
if the assignment M 7→ fP(M)(t) were valuative, then the defining formula for wα,β,a,b(t)
would actually be identically zero. The polynomial wα,β,a,b(t) quantifies (in a certain
way) how far the map M 7→ fP(M)(t) is from being valuative.

2.3 Face counting of split matroids

For a connected split matroid M, let us define the following numbers that we have al-
ready mentioned in the introduction. The number of stressed subsets with non-empty
cusp having rank r and size h, denoted λr,h — recall that by [10, Proposition 3.9], in a
connected split matroid this is the same as the number of proper non-empty cyclic flats
of rank r and size h. We also need the numbers µα,β,a,b of (unordered) modular pairs
{F1, F2} of proper non-empty cyclic flats, i.e., F1 and F2 fulfilling the modularity property,

rk(F1) + rk(F2) = rk(F1 ∩ F2) + rk(F1 ∪ F2), (⋆)

where the indices denote the following quantities:

a = |F1 ∖ F2|, α = rk F1 − rk(F1 ∩ F2)

b = |F2 ∖ F1|, β = rk F2 − rk(F1 ∩ F2) .

Note that the set F1 ∩ F2 ⊊ F1 ⊊ [n] can not contain a circuit if M is a connected split
matroid, thus it is an independent set, i.e., rk(F1 ∩ F2) = |F1 ∩ F2|.

Theorem 2.4 Let M be a connected split matroid of rank k on n elements. The number of faces
of its base polytope P(M) is given by the polynomials

fP(M)(t) = f∆k,n(t)− ∑
r,h

λr,h · ur,k,h,n(t)− ∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t) (2.3)
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where the first sum ranges over all values with 0 < r < h < n and the second sum ranges over
the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

On one hand, note that the polynomials f∆k,n(t), ur,k,h,n(t) and wα,β,a,b(t) can be pre-
computed for all the occurring instances of the variables which appear as subindices.
The first non-trivial fact that is deduced by our statement is that in addition to the
parameters λr,h, which always appear in the computation of a valuative invariant, the
precise additional matroidal datum needed to compute the f -vector consists of the num-
bers µα,β,a,b. Strikingly, the last sum in equation (2.3) does not take into consideration
the rank nor the size of the matroid M itself, only the intersection data for the modular
pairs of flats. The second non-trivial fact is that it explains how to put together this
information in order to effectively computing the f -vector of P(M) for a split matroid,
circumventing the necessity of constructing the polytope.

Example 2.5 Let us take a look again at Example 2.2. The matroids N1 and N2 are sparse
paving, have rank k = 3 and size n = 6. In each case the proper non-empty cyclic
flats are exactly the non-bases, yielding for both matroids λ2,3,3,6 = 2. One can compute
the corresponding polynomial, u2,3,3,6(t) = 1 + 9t + 9t2 − t4. In N1, the intersection of
the only pair of proper non-empty cyclic flats, F1 = {1, 2, 3} and F2 = {4, 5, 6}, does
not satisfy the property (⋆), because rk(F1 ∩ F2) + rk(F1 ∪ F2) = 0 + 3, whereas rk(F1) +
rk(F2) = 2 + 2 = 4.

For N2, the situation is different, as F1 = {1, 2, 3} and F2 = {3, 4, 5} indeed satisfy (⋆),
and we have a = |F1 ∖ F2| = 2, b = |F2 ∖ F1| = 2, α = rk(F1)− |F1 ∩ F2| = 2 − 1 = 1,
and β = rk(F2) − |F1 ∩ F2| = 2 − 1 = 1, so that µ1,1,2,2 = 1 and we need to subtract
w1,1,2,2(t) = t2 + t3 to obtain the correct f -polynomial, as we expected.

2.4 Explicit formulas

The polynomials ur,k,h,n(t) and wα,β,a,b(t) in Theorem 2.4 are defined in terms of f -vectors
of specific matroid polytopes. In this subsection we will present explicit descriptions
for these polynomials, enabling us to do the face enumeration of a split matroid poly-
tope, without any convex hull or face lattice computation. To express the formulas in a
compact form, we will make use of multinomial coefficients. Let i, j, ℓ be non negative
integers, then (

i + j + ℓ

i, j

)
:=

(
i + j + ℓ

i, j, ℓ

)
=

(i + j + ℓ)!
i!j!ℓ!

.

We begin with an explicit formula for the polynomials wα,β,a,b(t).
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Proposition 2.6 For any 0 < α < a and 0 < β < b, the following formula holds:

wα,β,a,b(t) =
a−α−1

∑
i=0

α−1

∑
j=0

b−β−1

∑
i′=0

β−1

∑
j′=0

(
a

i, j

)(
b

i′, j′

)
· (1 + t) · ta+b−i−j−i′−j′−2 .

For the polynomials ur,k,h,n(t) we provide the following formula.

Proposition 2.7 For any 0 < r < k < n and r < h < n the following formula holds

ur,k,h,n(t) = pr,k,h,n(t)− p′r,h(t) · p′k−r,n−h(t) · (1 + t) +
k

∑
i=r+1

(
h
i

)(
n − h
k − i

)
where p′r,h(t) = f∆r,h(t)− (h

r) and

pr,k,h,n(t) =
h−r−1

∑
j=0

min{h−j,k−1}

∑
i=0

min{k−i,k−r}−1

∑
ℓ=0

min{n−h−ℓ,n−k−j−1}

∑
m=0

(
h

i, j

)(
n − h
ℓ, m

)
tn−1−s.

where s denotes i + j + ℓ+ m in the above sum.

Example 2.8 Let M be the projective geometry PG(2, 3). This is a matroid on n = 13
elements of rank k = 3. It is split as it is in fact paving. This matroid has 13 stressed
hyperplanes, i.e., rank k− 1 = 2 flats, all of which have cardinality h = 4. In other words,
we have λ2,4 = 13. In particular, to use the formula of Theorem 2.4, the polynomial

u2,3,4,13(t) = − t11 − 11 t10 − 54 t9 − 156 t8 − 294 t7 − 378 t6

− 336 t5 − 195 t4 + t3 + 166 t2 + 114 t + 4

is required. Since projective geometries are modular matroids, any pair of distinct proper
non-empty cyclic flats fulfills the property (⋆). Also, every pair of them intersect in a
single element. Moreover, for every pair of these cyclic flats we have a = |F1 ∖ F2| = 3,
and by symmetry b = |F1 ∖ F2| = 3. Additionally, α = rk(F1)− |F1 ∩ F2| = 2 − 1 = 1 and
again by symmetry β = rk(F2)− |F1 ∩ F2| = 1. Therefore there is a single non-vanishing
coefficient µα,β,a,b which is

µ1,1,3,3 =

(
13
2

)
= 78 .

It remains to compute:

w1,1,3,3(t) = t5 + 7t4 + 15t3 + 9t2 .

Now applying Theorem 2.4, we obtain:

fP(PG(2,3))(t) = f∆3,13(t)− 13 u2,3,4,13(t)− 78 w1,1,3,3(t)

= t12 + 39 t11 + 455 t10 + 2704 t9 + 9893 t8 + 24414 t7 + 42666 t6+

54054 t5 + 49608 t4 + 31707 t3 + 12870 t2 + 2808 t + 234 .
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2.5 Face numbers of sparse paving matroids

As mentioned in the introduction, it is conjectured that almost all matroids are sparse
paving; see [16] for the details. Furthermore, many famous examples of matroids fall
into this class; notable examples are the Fano matroid, the Vámos matroid, the com-
plete graph on four vertices, and the duals of each of them. Sparse paving and paving
matroids are split, so we can make use of our main result.

Corollary 2.9 Let M be a connected sparse paving matroid of rank k on n elements having
exactly λ circuit-hyperplanes, and let µ count the pair of circuit-hyperplanes which have k − 2
elements in common. Then

fP(M)(t) = f∆k,n(t)− λ · u(t)− µ · (t2 + t3)

where u(t) is given by

1 − k · (n − k) · (t + 1) +
(
(n − k) · (t + 1)k+1 + k · (t + 1)n−k+1 − n · (t + 1)

)
· t−1

+
(
(t + 1)k + (t + 1)n−k − (t + 1)n − 1

)
· t−2 .

Remark 2.10 This formula can be used to prove that the number of facets of the base
polytope of a matroid on n elements may be as large as c2n/n3/2 for an absolute constant
c. However, for arbitrary 0/1-polytopes in Rn it is known that the number of facets can

be larger than
(

cn
log n

)n/4
, via a random construction [4].

Given a lattice polytope P ⊆ Rn, an extended formulation of P is another lattice poly-
tope Q ⊆ Rm together with a projection map π : Rm → Rn which projects Q onto P.
The complexity of an extended formulation is the number of facets of the polytope Q.
The extension complexity of P, denoted xc(P), is the minimum complexity of an extended
formulation of P.

In a landmark paper [20, Corollary 6], Rothvoss proved 1 that for all n there exists
a matroid M on n elements whose base polytope has extension complexity xc(P(M)) ∈

Ω
(

2n/2

n5/4
√

log(2n)

)
. Moreover, Rothvoss’ proof is non-constructive and relies only on an

enumerative result of matroids, that therefore guarantees that whatever these examples
are, they must belong to the class of sparse paving matroids, and are therefore split
matroids. It remains a notorious open problem to find an explicit family of matroids
having exponential extension complexity. In fact, having one would yield an explicit
infinite family of Boolean functions requiring superlogarithmic depth circuits, according

1To be precise, Rothvoss proved that the extension complexity of the independence polytope of some ma-
troid is exponential, but an elementary reasoning shows that this is equivalent to an analogous statement
for the base polytope. See for example the short explanation in [2, p. 1].
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to an observation attributed to Göös in [2, Section 8]. We conjecture, however, that
a certain class of “extremal” sparse paving matroids must already constitute such an
example; for the details of the conjecture we refer to the extended version of the present
paper [9].

2.6 Face numbers of rank two matroids

A loopless matroid of rank two is trivially paving, and hence a split matroid. This allows
us to use the strength of Theorem 2.4 to compute their f -vectors. The hyperplanes,
i.e., the flats of rank one, of a loopless matroid of rank two form a partition of the
ground, and conversely, any partition of the ground set defines precisely a single rank
two matroid having each part as a flat. The bases of the matroid are obtained by taking
two elements of the ground set, not belonging to the same part.

Base polytopes of matroids of rank two have made prominent appearances through-
out algebraic combinatorics, under various guises. Notably, as is pointed out in [8,
Section 6.1], they coincide with edge polytopes of complete multipartite graphs — we
refer to that paper for the precise definition of edge polytopes and a short overview of
them. In this vein, the work of Ohsugi and Hibi [17] addresses the edge polytopes of
complete multipartite graphs, motivated both from toric geometry and graph theory. In
particular, the content of [17, Theorem 2.5] provides a formula for the f -vector of the
edge polytope of an arbitrary complete multipartite graph, and thus for general rank
two matroid polytopes. Let us point out that there appears to be an error in the formula
as they stated it — in particular within the quantity they denote by αi. As an application
of Theorem 2.4 we can give another formula for the f -vector of these polytopes.

Corollary 2.11 Let M be a loopless matroid of rank two having s hyperplanes with cardinalities
h1, . . . , hs. Then, the number of i-dimensional faces of P(M) or, equivalently, the edge polytope
of a complete multipartite graph with parts of sizes h1, . . . , hs is given by:

fi(P(M)) =

(
n + 1
i + 2

)
+ (s − 1)

(
n

i + 2

)
− ∑

j<ℓ

(
hj + hℓ + 1

i + 2

)

+ (s − 2)
s

∑
j=1

(
hj + 1
i + 2

)
−

s

∑
j=1

(
n − hj

i + 2

)
.

2.7 Questions on the shape of f -vectors of matroids

A recent trend in matroid theory is that of proving unimodal and log-concave inequali-
ties for various vectors of numbers associated to matroids. A finite sequence of numbers
(a0, . . . , an) is said to be unimodal if there exists some index 0 ≤ j ≤ n with the property
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that
a0 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ an.

If all the ai’s are positive, a stronger condition is that of log-concavity, which asserts that
for each index 1 ≤ j ≤ n − 1 the inequalities a2

j ≥ aj−1aj+1 hold.
It is quite inviting to ask the following question.

Question 2.12 Are the f -vectors of matroid base polytopes unimodal, or even log-
concave?

It is known that there are simplicial polytopes having a non-unimodal f -vector; see
[21, Chapter 8.6]. Within the existing literature we were not able to find any examples
of non-unimodal f -vectors for the general class of 0/1-polytopes. We have been able to
verify the log-concavity of the f -vectors of the following classes of matroids, in some
cases relying critically on the results of this paper:

• All matroids on a ground set of size at most 9.

• Split matroids on a ground set of size at most 15.

• Sparse paving matroids on a ground set of size at most 40.

• Lattice path matroids on a ground set of size at most 13.

• Rank two matroids on a ground set of size at most 60.

Note: An extended version of this manuscript including all proofs can be found on the
arXiv, see [9].
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