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Abstract. We obtain scaling and local limit results for large random multirectangular
Young tableaux via the asymptotic analysis of a determinantal point process due to
Gorin and Rahman (2019). In particular, we find an explicit description of the limiting
surface, based on solving a complex-valued polynomial equation. As a consequence,
we find a simple criterion to determine if the limiting surface is continuous in the
whole domain, implying that, for multirectangular tableaux, the limiting surface is
generically discontinuous.

1 Introduction

Random Young diagrams form a classical theme in probability theory, starting with
the work of Logan–Shepp and Vershik–Kerov on the Plancherel measure [12, 19]. The
topic is deeply connected with random permutations, random matrix theory and particle
systems, and has known an increase of interest after the discovery of an underlying
determinantal point process for a Poissonized version of the Plancherel measure [4]. It
would be vain to do a complete review of the related literature, and we refer only to [8,
17] for books on the topic.

In comparison, random Young tableaux have a shorter history. Motivations to study
random Young tableaux range from asymptotic representation theory to connections
with other models of combinatorial probability, such as random permutations with short
monotone subsequences [16] or most notably random sorting networks; see e.g. [1].

As in most of the literature, we are interested in the simple model where we fix a
partition λ (or rather a sequence of growing partitions) and consider a uniform random
tableau T of shape λ. In [14], Pittel and Romik derived a limiting surface result for uni-
form random Young tableaux of rectangular shapes, based on the hook length formula
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and analytic arguments. An earlier result of Biane in asymptotic representation theory
[2] implies, in fact, the existence of such limiting surfaces for any underlying shape.
However, getting explicit formulas for these limiting surfaces is difficult since their de-
scription involves the Markov–Krein correspondence and the free compression of prob-
ability measures. More recently, entropy optimization methods have been applied to
prove the existence of limiting surfaces, extending the result to skew shapes [18]. These
techniques lead to some natural gradient variational problems in R2 whose solutions are
explicitly parameterized by κ-harmonic functions, as shown in [10].

Recently, in [5], a determinantal point process structure was discovered for a Pois-
sonized version of random Young tableaux. This determinantal structure was used for a
specific problem motivated by the aforementioned sorting networks, namely describing
the local limit of uniform tableaux of staircase shape around their outer diagonal [5, 6].

The goal of the current paper is to exploit this determinantal point process structure
in order to get limiting results for a large family of shapes. Namely, we consider shapes
obtained as dilatations of any given Young diagram λ0, i.e. multirectangular diagrams.
Here is an informal description of our results.

• We obtain a new description of the limiting surface corresponding to the shape λ0,
based on solving a complex-valued polynomial equation (Theorem 4). This new
description is more explicit compared to the one obtained through the existence
approaches.

• This first result leads us to a surprising discontinuity phenomenon for the limiting
surface corresponding to λ0. More precisely, we establish a simple criterion –
some equations involving the so-called interlacing coordinates of λ0 – to determine
whether the limiting surface is continuous (Theorem 6). This shows that such
limiting surfaces are typically discontinuous for multirectangular tableaux.

• We also obtain a local limit result in the bulk of random Young tableaux. Due to
space constraints, we do not present this result in this extended abstract and refer
the interested reader to the long version of the article [3].

Remark 1. In parallel to this work, explicit formulas for the limiting surfaces of random Young
tableaux have also been obtained by Prause [15] through a different method (solving a variational
problem obtained by the tangent plane method of Kenyon and Prause [10]).

2 Results

2.1 Young tableaux and height function

Let us start by fixing terminology and notation. A partition of n is a non-increasing list
λ = (λ1, λ2, . . . , λl) of positive integers with N = ∑l

i=1 λi. We write |λ| = N for the size
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Figure 1: Left: The Young diagram of the partition (4, 4, 2, 1) drawn in Russian conven-
tion, with the coordinates of each box inside it. Right: A Young tableau T : λ → [N]

of shape λ corresponding to the partition (6, 6, 6, 4, 4, 4, 3, 3) drawn according to the
Russian convention; all the boxes are squares with area 2. We indicate the interlacing
coordinates a0 < b1 < a1 < b2 < · · · < bm < am below the x-axis.

of the partition and ℓ(λ) = l for the length of the partition and use the convention λi = 0
when i > ℓ(λ). We represent partitions graphically with the Russian convention, i.e. for
each i ≤ ℓ(λ) and j ≤ λi we have a square box whose sides are parallel to the lines x = y
and x = −y and whose center has coordinates (j − i, i + j − 1); see the left-hand side of
Figure 1. This graphical representation is called Young diagram of shape λ.

When looking at a Young diagram λ, its upper boundary is the graph of a 1-Lipschitz
function, denoted by ωλ : R → R, and the diagram λ can be encoded using the local
minima and maxima of the function ωλ. Following Kerov [11], we denote them by

a0 < b1 < a1 < b2 < · · · < bm < am, ai, bi ∈ Z, (2.1)

and we call them interlacing coordinates. See the right-hand side of Figure 1 for an ex-
ample. Note that a0 = −ℓ(λ) and am = λ1. Furthermore, interlacing coordinates satisfy
∑m

i=0 ai = ∑m
i=1 bi, see, e.g., [9, Proposition 2.4].

A Young tableau of shape λ is a filling of the boxes of λ with the numbers 1, 2, . . . , N
such that the numbers along every row or column are increasing. We see Young tableaux
as functions T : λ → [N] = {1, 2, . . . , N}, where the Young diagram λ is identified with
the set {(j − i, i + j − 1), i ≤ ℓ(λ), j ≤ λi}; see again the right-hand side of Figure 1 for an
example. The function T : λ → [N] can be thought of as the graph of a (non-continuous)
surface above the set λ.

We also represent a tableau T of size N by its height function HT (normalized in the
second argument). It is a map from ([a0, am] ∩ Z)× [0, 1] to Z≥0 defined by

HT(x, t) = # {y : T(x, y) ≤ Nt} , (2.2)

i.e. HT(x, t) is the number of entries smaller than Nt in the vertical line {x} × Z≥0.
Clearly, the tableau T is entirely determined by the height function HT. Moreover, we
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have that
T(x, y) < Nt if and only if H(x, t) > 1

2(y − |x|). (2.3)

2.2 Previous results: existence of a limiting height function

We now look at growing Young diagrams, and the associated random tableaux. We fix
a Young diagram λ0, and take our growing sequence of diagrams as dilatations of λ0.
Namely, for n > 0, we define N = N(n, λ0) = n2|λ0| and consider the (n × n)-dilated
diagram λN obtained by replacing each box of λ0 by a square of n × n boxes. Note that
λN has size N. We set η = 1/

√
|λ0|, so that scaling λ0 in both directions by a factor

η gives a diagram of area 2. Finally, we let TN be a uniform random Young tableau of
shape λN.

The following convergence result for the height function of TN is proved in [18, Theo-
rem 7.15]. It also follows indirectly from earlier concentration results on random Young
diagrams by Biane [2]; see [13, Proposition 10.1].

Theorem 2 ([18, Theorem 7.15] and [13, Proposition 10.1]). Let λ0 be a fixed Young diagram
and a0, . . . , am be its interlacing coordinates as defined in (2.1). We let TN be a uniform random
Young tableau of shape λN. Then there exists a deterministic function H∞ : [η a0, η am] ×
[0, 1] → R such that the following convergence in probability holds:

1√
N

HTN

(
⌊x
√

N⌋, t
)
−−−−→
N→+∞

H∞(x, t), (2.4)

uniformly for all (x, t) in [η a0, η am]× [0, 1].

In [18], the limiting function H∞ is implicitly found to be the unique maximizer of a
certain entropy functional subject to some boundary conditions depending on the dia-
gram λ0. Using the approach of [2, 13], for each t ∈ [0, 1], the section H∞(·, t) is described
using the free cumulants of an associated probability measure. Both descriptions are dif-
ficult to manipulate. Our first result gives an alternative and more explicit description
of H∞ through the solution of a polynomial equation, called the critical equation.

2.3 First result: a compact description of the limiting height function

Let a0 < b1 < a1 < b2 < · · · < am be the interlacing coordinates of λ0, introduced in
(2.1). For (x, t) in [η a0, η am] × [0, 1], we consider the following polynomial equation,
referred to throughout the paper as the critical equation:

U
m

∏
i=1

(x − η bi + U) = (1 − t)
m

∏
i=0

(x − η ai + U). (2.5)
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This is a polynomial equation in the complex variable U of degree m + 1. Using the fact
that the ai’s and bi’s are alternating, one can easily prove that (2.5) has at least m − 1 real
solutions; see [3, Lemma 24] for details. Hence it has either 0 or 2 non-real solutions.

Definition 3. We let L be the set of pairs (x, t) in [η a0, η am] × [0, 1] such that (2.5) has
two non-real solutions and we call it liquid region. The complement of the liquid region in
[η a0, η am]× [0, 1] will be referred to as the frozen region.

For (x, t) ∈ L, we denote by Uc = Uc(x, t) the unique solution with a positive imag-
inary part of the critical equation (2.5). We use the notation Rz and Iz for the real and
imaginary parts of the complex number z. It turns out that the limiting height function
H∞ is expressed in terms of Uc using the following simple formula.

Theorem 4. With the above notation, for (x, t) ∈ [η a0, η am]× [0, 1], we have

H∞(x, t) =
1
π

∫ t

0

IUc(x, s)
1 − s

1[(x, s) ∈ L] ds .

Informally, the liquid region is the limit of the region where the height function HTN is
strictly increasing in the t-direction, and the t-derivative of HTN in this region is roughly
given by

√
N IUc(x, s)/(π(1 − s)).

2.4 Limiting surfaces and discontinuities

It is natural to try to translate the limiting result for the height function to a limit result
for the tableau itself, seen as a discrete surface. Namely, we set

Dλ0 :=
{
(x, y) ∈ R2 : |x| < y < η ωλ0(x/η)

}
, (2.6)

which is the open domain of R2 corresponding to the diagram λ0 (in Russian conven-
tion), normalized to have area 2. For (x, y) in Dλ0 , letting TN be a uniform tableau of
shape λN, we consider

T̃N(x, y) :=
1
N

TN

(
⌊x
√

N⌋, ⌊y
√

N⌋+ δ
)

, (2.7)

where δ ∈ {0, 1} is chosen so that the arguments of TN have distinct parities. We want
to find a scaling limit for the function T̃N(x, y). To this end, we set for all (x, y) ∈ Dλ0 ,

T∞
+ = T∞

+ (x, y) := sup
{

t ∈ [0, 1] : H∞(x, t) ≤ 1
2(y − |x|)

}
,

T∞
− = T∞

− (x, y) := inf
{

t ∈ [0, 1] : H∞(x, t) ≥ 1
2(y − |x|)

}
.

(2.8)

Comparing Equations (2.3) and (2.8), the following statement is an easy consequence
of Theorem 2, see [3] for details.
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Proposition 5. For all ε > 0, the following limit holds uniformly for all (x, y) ∈ Dλ0 :

lim
N→+∞

P
(
T̃N(x, y) < T∞

− − ε
)
= lim

N→+∞
P
(
T̃N(x, y) > T∞

+ + ε
)
= 0.

We let Dreg
λ0 be the set of coordinates (x, y) ∈ Dλ0 such that T∞

− (x, y) = T∞
+ (x, y).

For such points, we simply write T∞(x, y) for this common value. Then Proposition 5
implies the following convergence in probability for (x, y) ∈ Dreg

λ0 :

lim
N→+∞

T̃N(x, y) = T∞(x, y), (2.9)

On the other hand, for (x, y) in Dλ0 \ Dreg
λ0 , we do not know whether T̃N(x, y) converges

at all, and the limiting surface T∞ is discontinuous at such points.
A natural question is whether such discontinuity points (x, y) exist at all in Dλ0 . Our

second main result shows that such points indeed exist unless λ0 is a rectangle, or unless
its interlacing coordinates satisfy some specific equations.

Theorem 6. For a Young diagram λ0, the following assertions are equivalent:

1. The limiting surface T∞ is continuous in the whole domain Dλ0 ;

2. The interlacing coordinates defined in (2.1) satisfy the system of equations:

m

∑
i=0
i ̸=i0

1
ai0 − ai

=
m

∑
i=1

1
ai0 − bi

, for all i0 = 1, . . . , m − 1. (2.10)

Note that when m = 1, i.e. when λ0 has a rectangular shape, there are no equations
in the second item. Indeed, the limiting surface T∞ is always continuous in this case.
For m > 1 however, the limiting surface is generically discontinuous.

3 Examples

In this section, we illustrate our results in the cases m = 1 (rectangular shapes) and
m = 2 (L-shapes). Before starting, let us note that our model and all results are invariant
when multiplying all interlacing coordinates of λ0 by the same positive integers. We
will therefore allow ourselves to work with diagrams λ0 with rational (non-necessarily
integer) interlacing coordinates.
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Figure 2: Left: The graphs of the function α(x, s) =
√

4s−4s2−x2

2s−2s2 from Remark 8. Right:
The corresponding limiting surface T∞

1 (x, y) for squared diagrams. Note that we are
using two different orientations of axes in order to improve the visualization.

3.1 An explicit formula for the rectangular case

In this section, we consider a rectangular diagram λ0. Without loss of generality, we
assume a0 = −1 and write r = a1. Necessarily, b1 = r − 1. Solving explicitly the critical
equation (2.5), which is in this case a degree 2 polynomial equation, we get:

Proposition 7. The limiting height function corresponding to a 1 × r rectangular shape λ0 is
given by

H∞
r (x, t) =

1
π

∫ t

0

√
s(4r − (1 + r)2s) + 2(r − 1)

√
rsx − rx2

2
√

r(1 − s)s
ds (3.1)

with the convention that
√

x = 0 if x ≤ 0. Furthermore, the limiting surface T∞
r is continuous

on Dλ0 and is therefore implicitly determined by the equation

H∞
r (x, T∞

r (x, y)) = 1
2(y − |x|). (3.2)

Remark 8. In the case r = 1 (square Young tableaux), we get

H∞
1 (x, t) =

1
π

∫ t

0

√
4s − 4s2 − x2

2s − 2s2 ds .

The graph of the function α(x, s) =
√

4s−4s2−x2

2s−2s2 is plotted on the left-hand side of Figure 2,
while the corresponding limiting surface T∞

1 is on the right. The above integral can be explicitly
computed, recovering the formula found by Pittel and Romik from [14]. Pittel and Romik also
give formulas for the general rectangular case, which should coincide with (3.1), though we could
not verify directly the equivalence of both formulae.

One can also obtain explicit formulas for L-shaped diagrams; since the latter expres-
sions are involved, we decided not to display them, and to discuss examples instead.
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Figure 3: Figures for the heart example (top row) and for the pipe example (bottom
row). In each row, from left to right: The Young diagram λ0 or λ̃0 with its interlacing
coordinates, the boundary curve of the corresponding liquid region, a uniform random
tableau TN of shape λN (with respectively N = 130000 and N = 59400 boxes) and the
corresponding height function HTN (in 3D plots, the brown colour is used for small
values of the surface and blue for large ones).

3.2 Two concrete examples of L-shape diagrams

We now consider two specific diagrams λ0 and λ̃0 which are both L-shaped (i.e. m = 2).
Due to the shape of the corresponding liquid regions (see the pictures in Figure 3), the
first one is called the heart example and the second one the pipe example.

In the heart example, the Young diagram λ0 has interlacing coordinates

a0 = −5 < b1 = −4 < a1 = −1 < b2 = 3 < a2 = 5. (3.3)

In this case we have |λ0| = 13, so that η = 1/
√
|λ0| = 1/

√
13 and [η a0, η am] =

[−5/
√

13, 5/
√

13] ≈ [−1.39, 1.39].
In the pipe example, the Young diagram λ̃0 has interlacing coordinates

ã0 = −200 < b̃1 = −197 < ã1 = −90 < b̃2 = 10 < ã2 = 103. (3.4)

In this case, we have |λ̃0| = 9900, so that η̃ = 1
30
√

11
and [η̃ ã0, η̃ ãm] = [− 200

30
√

11
, 103

30
√

11
] ≈

[−2.01, 1.04].
For both examples, we have computed the boundary of the liquid region defined

in Definition 3. Independently, we have also generated a uniform random tableau of
shape λN for large N (using the Greene–Nijenhuis–Wilf hook walk algorithm [7]), and
we present 3D plots both of the tableau T as a function from λ to [0, 1] and of its height
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function HT (which is a function from [na0, nam] × [0, 1] to Z≥0). In both cases, the
domain where the height function HT is increasing in t fits very well with the liquid
region, as predicted by Theorem 4.

An essential difference between the two examples is that the interlacing coordinates
satisfy Condition (2.10) in the heart example, while this is not the case in the pipe exam-
ple. From Theorem 6, the limiting surface is continuous in the heart example and not in
the pipe example. This is indeed visible on the pictures, as we now explain.

In the heart example, the intersection of the liquid region with any vertical line is
connected; in other terms, for every x ∈ [η a0, η am], the function t 7→ H∞(x, t) is first
constant equal to 0, then strictly increasing, and then constant equal to its maximal value.
Therefore, with the notation of (2.8), we have T∞

− (x, y) = T∞
+ (x, y) for all (x, y) in Dλ0

and the limiting surface T∞ is defined and continuous on the whole set Dλ0 . Looking at
the random tableau drawn as a discrete surface, it is indeed plausible that it converges
to a continuous surface.

In the pipe example, however, we can find some x0 just on the right of η ã1 = − 3√
11

≈
−0.9 so that the liquid region intersects the line x0 × [0, 1] in two disjoint intervals.
The function t 7→ H∞(x0, t) is then constant, equal to some value y0 between these
two intervals. It follows that T∞

− (x0, y0) < T∞
+ (x0, y0) and the limiting surface T∞ is

discontinuous at (x0, y0). This discontinuity can be observed on the 3D plot of the
tableau TN (see the zoom inside the red circle on the left-hand side, where we observe a
jump in the values of TN).

4 Proof strategy

We now discuss the proof strategy of Theorems 4 and 6. Details can be found in [3].

4.1 Poissonized tableaux and determinantal point process

Following [5], we define a Poissonized Young tableau of shape λ as a function λ → [0, 1]
satisfying the same monotonicity constraints as standard tableaux. We encode such a
tableau T by a set MT of particles in Z × [0, 1] defined as

MT =
{
(x, T(x, y)), (x, y) ∈ λ

}
.

A remarkable result of [5] states that, for any shape λ, if T is a uniform random Pois-
sonized tableau of shape λ, then MT is a determinantal point process with kernel

Kλ((x1, t1), (x2, t2)) = − 1
(2iπ)2

∮
γz

∮
γw

Fλ(z)
Fλ(w)

Γ(w−x1+1)
Γ(z−x2+1)

(1−t2)
z−x2 (1−t1)

−w+x1−1

z−w dw dz , (4.1)

where
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• Fλ(u) := Γ(u + 1) ∏∞
i=1

u+i
u−λi+i =

∏m
i=0 Γ(u−ai+1)

∏m
i=1 Γ(u−bi+1) ;

• γw and γz are counterclockwise contours containing all the integers in [a0, x1] and
in [x2, am] respectively;

• γw and is inside (resp. outside) γz if t1 ≥ t2 (resp. t1 < t2);
• the ratio 1

z−w remains uniformly bounded on the contours γw and γz.

4.2 Asymptotic behaviour of the kernel

To prove Theorem 4, we look for the asymptotic behaviour of the kernel in the regime

xi = x0
√

N + ξi, ti = t0 +
τi√
N

(i = 1, 2),

where (x0, t0) is fixed in [ηa0, ηam]× [0, 1]. In particular, the density of particles in MT
around (x0

√
N, t0), normalized by 1/

√
N, is given by Kλ((x0

√
N, t0), (x0

√
N, t0)), corre-

sponding hence to ξ1 = ξ2 = τ1 = τ2 = 0. In this regime, a careful asymptotic analysis
shows that the integrand in Equation (4.1) behaves as

IntN(W, Z) ≃ (
√

N)ξ2−ξ1e
√

N(S(W)−S(Z)) h(W, Z), (4.2)

for some function S and h. The critical equation (2.5) corresponds to the equation
S′(U) = 0, i.e. its solutions are critical points of S. The idea is then to move the in-
tegration contours so that S(W) < S(Z) on the new contours, making the integrand and
thus the integral tend to 0. Moving the integration contour may yield a residue term,
which gives the non-trivial asymptotic of Kλ((x0

√
N, t0), (x0

√
N, t0)).

Let us explain briefly how this works when (x0, t0) is in the liquid region. By def-
inition, in this case, S has two non-real critical points, which are necessarily conjugate,
that we denote by Uc and Ūc. Comparing RS(U) (for generic U) to RS(Uc) divides the
complex plane into regions as shown on Figure 4 (the shape of those regions is carefully
justified in the long version of the paper [3]). We then move the integration contours so
that S(W) < S(Uc) < S(Z) almost everywhere on the new contours. Note that the new
contour γnew

W is not inside γnew
Z , while γw is inside γz since t1 = t2 in the case of inter-

est. Thus moving the contours yields a residue term associated with the pole Z = W in
Equation (4.1), which can be computed explicitly. We find

lim
N→+∞

Kλ((x0
√

N, t0), (x0
√

N, t0)) =
IUc(x0, t0)

π(1 − t0)
,

which implies after some work Theorem 4.
We note that the general proof strategy is standard in integrable probability but needs

many careful estimations and arguments to justify the existence of the appropriate con-
tours, and the asymptotic behaviour of the various terms (see [3]).
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U c

γW γZ

A B C 0

Uc

U c

γnew
W γnew

Z

CBA D E

Figure 4: Left: The yellow regions correspond to {RS(U) < RS(Uc)}, while the
white regions correspond to {RS(U) > RS(Uc)}. We plotted the original integration
contours γW (in green) and γZ (in purple) appearing in Equation (4.1). The green and
purple dots are respectively the W-poles and Z-poles of the integrand. Right: The new
integration contours so that S(W) < S(Z) almost everywhere on the contours.

4.3 Characterization of continuous limit shapes

We now discuss the proof of Theorem 6. Looking at the shape of the liquid regions in
Figure 3 and at the discussions on the heart and pipe examples, we see that the limit
shape is continuous if and only if the tangent vectors to the boundary of the liquid region
at its cusp points are all vertical. The boundary of the liquid region is precisely the set
of points (x, t) where the discriminant of the polynomial equation (2.5) vanishes, see [3,
Proposition 27]. Using this description, we can obtain an explicit parametrization of this
boundary curve, and compute the tangent vectors at its cusp points. Each cusp point
gives one of the condition given in Equation (2.10), concluding the proof of the theorem.
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