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Abstract. We introduce a simple bijection between Tamari intervals and the blossom-
ing trees (Poulalhon and Schaeffer, 2006) encoding planar triangulations, using a new
meandering representation of such trees. Its specializations to the families of synchro-
nized, Kreweras, new/modern, and infinitely modern intervals give a combinatorial
proof of the counting formula for each family. Compared to (Bernardi and Bonichon,
2009), our bijection behaves well with the duality of Tamari intervals, enabling also the
counting of self-dual intervals.

Résumé. Nous donnons une nouvelle bijection simple entre les intervalles de Tamari
et les arbres bourgeonnants (Poulalhon et Schaeffer, 2006) qui encodent les trian-
gulations planaires, en passant par une nouvelle représentation méandrique de ces
arbres. Les spécialisations aux familles des intervalles synchrones, Kreweras, nou-
veaux/modernes, et infiniment modernes donnent des preuves combinatoires des for-
mules de comptage pour ces familles. Par rapport à (Bernardi et Bonichon, 2009),
notre bijection se comporte bien vis-à-vis de la dualité des intervalles de Tamari, nous
permettant de compter les intervalles auto-duaux.
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1 Introduction

The Tamari lattice Tamn is a well-known poset on Catalan objects of size n, that plays an
important role in several domains, such as representation theory [1, 5], polyhedral com-
binatorics and Hopf algebras [3, 13]. Partially motivated by such links, the enumeration
of intervals in the Tamari lattice was first considered by Chapoton [6] who discovered
the beautiful formula

In =
2

n(n + 1)

(
4n + 1
n − 1

)
(1.1)

for the number of intervals in Tamn. The subject has attracted much attention since then,
with strikingly simple counting formulas found for several other families [4, 5, 10].
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Regarding combinatorial proofs, Bernardi and Bonichon [2] gave a bijection from
Tamari intervals to planar (simple) triangulations via Schnyder woods. Then, a bijection
by Poulalhon and Schaeffer [15] encodes the same triangulations by a class of blossoming
trees, which yields (1.1). The bijection in [2] can be specialized to some subfamilies of
Tamari intervals, such as Kreweras intervals [2] and synchronized Tamari intervals [11].
Another strategy, for instance in [10], is to construct bijections between Tamari intervals
and planar maps inspired by their recursive decompositions.

In this extended abstract, we present a more direct bijection between Tamari inter-
vals and the blossoming trees from [15]. Readers are referred to [9] for the full version.
Our construction, presented in Sections 2 and 3, starts from a suitable planar represen-
tation of an interval as a pair of binary trees. With simple local operations, we get a
“meandering representation” of the interval, closely related to interval-posets of Châtel
and Pons [7]. Such a representation can be seen as a folded version of a blossoming
tree. When unfolded, the blossoming tree is characterized by local conditions as in [15].
We also find it convenient to give a certain bicoloring to half-edges in blossoming trees,
which breaks symmetries.

Due to its simplicity, our bijection is also well-suited for specializations to known
subfamilies of Tamari intervals, by characterizing the blossoming trees in each case (The-
orem 4.5). In addition to synchronized intervals, whose specialization is much simpler
than that in [11], and Kreweras intervals, already given in [2], our bijection also special-
izes to new/modern intervals [6, 16] and infinitely modern intervals [16]. Compared
to [2], our bijection has also the advantage that it transfers the duality involution on
Tamari intervals in a simple way, which amounts to a color-switch in blossoming trees
(Proposition 4.6). Self-dual intervals thus correspond to blossoming trees with a half-
turn symmetry, which are easy to count for each family we consider (see Table 1), lead-
ing to counting formulas that are new to our knowledge, except for Kreweras intervals,
for which it is known.

The following statement summarizes our main results.

Theorem 1.1. There is a bijection Φ between intervals in Tamn and bicolored blossoming trees of
size n that sends self-dual intervals to blossoming trees with a half-turn symmetry. Its specializa-
tion to synchronized, Kreweras, modern/new, and infinitely modern intervals yields combinatorial
proofs of counting formulas for intervals and self-dual intervals in each case, see Table 1.

Finally, besides color switch, another natural involution on blossoming trees is to
apply a reflection. This yields a new involution on Tamari intervals with interesting
properties, see Remark 4.7.
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2 Tamari intervals and their meandering representation

Let Tn be the set of rooted binary trees with n nodes. Recall that the Tamari lattice Tamn
is the poset (Tn,≤) whose covering relations are given by right rotations, i.e., changing a
subtree of the form ((T1, T2), T3)) into (T1, (T2, T3)). An interval in Tamn is a pair (T, T′)
such that T ≤ T′. Let Xn = Tn × Tn, and In ⊆ Xn the set of intervals in Tamn. In the
following, we denote by [n] the set {1, . . . , n} ⊂ N.

T
canonical drawing smooth drawing

Figure 1: A binary tree T with its canonical drawing and smooth drawing.

We first review some representations and encodings of binary trees. For T ∈ Tn,
the canonical drawing of T is the crossing-free drawing of T with its n + 1 leaves placed
from left to right at the points of abscissas 0, . . . , n on the x-axis, its nodes in the upper
half-plane, and its left (resp. right) branches being segments of slope 1 (resp. −1). The
smooth drawing of T is obtained by removing all lines, then for each node u, adding a
semi-circle in the upper half-plane linking the leftmost and the rightmost leaves of the
subtree induced by u, see Figure 1. For t ∈ [n], let At be the unique arc covering the
unit-segment [t − 1, t] and visible from it, see the left-part of Figure 2.

1 1 2 0 3 1 0 0 0

diagram-drawing

degree-vector

Figure 2: Construction of the diagram-drawing from the smooth drawing, with its
degree-vector.

For T ∈ Tn, the diagram-drawing T̂ of T is obtained from the smooth drawing of T as
follows. For each t ∈ [n], we add a white point at t − 1

2 , and we replace At by an arc
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T

ab
a in V(T )
b in V′(T )V(T ) :

V′(T ) :

7 6 40 1 0 0 0

0 0 10 0 0 2 3

Figure 3: A binary tree T, its bracket-vector V(T) and dual bracket-vector V′(T).

from this white point to the black point at the left end of At, see Figure 2. To recover the
smooth drawing from T̂, for each white point w of T̂, its right-attachment point b is the
black point at x = n if there is no arc above w, and is the black point to the left of w′ if w
is covered by an arc b′ → w′. Then, to obtain the smooth drawing of T, each arc b → w
in T̂ is replaced by an arc connecting b to the right-attachment point of w.

For T ∈ Tn, the degree-vector of T is the vector Deg↗(T) = (d0, . . . , dn) such that di

is the number of arcs incident to the black point b at x = i in the diagram-drawing T̂
for 0 ≤ i ≤ n. We see that di is also the right-degree of b in the smooth drawing of T,
and is the length of the left branch of T ending at the leaf at abscissa i in the canonical
drawing. The diagram-drawing of T is easily recovered from its degree-vector.

Finally, we recall the bracket-vector and dual bracket-vector encoding of a binary tree
T ∈ Tn. We label the nodes of T by left-to-right infix order, with vi the node of label
i ∈ [n]. Let ai (resp. bi) be the size of the right (resp. left) subtree of vi. The bracket-vector
of T is V(T) = (a1, . . . , an), and the dual bracket-vector of T is V′(T) = (b1, . . . , bn), see
Figure 3 for an illustration. These vectors can also be specified by inequality constraints,
which we do not reproduce here, see [12]. The bracket-vector encoding is convenient to
characterize Tamari intervals. For (T, T′) ∈ Xn, it is known [12] that (T, T′) ∈ In if and
only if V(T) ≤ V(T′) componentwise, or equivalently, V′(T) ≥ V′(T′) componentwise.

Remark 2.1. The dual bracket-vector is closely related to the diagram drawing. For T ∈ Tn
and t ∈ [n], the unique arc at the white point t − 1

2 is connected to the black vertex at
x = t − 1 − bt.

The mirror of a binary tree T, denoted by mir(T), is the mirror image of T exchanging
left and right. The mirror canonical drawing (resp. mirror smooth drawing) of T is the canon-
ical drawing (resp. smooth drawing) of mir(T) rotated by a half-turn, which preserves
the left-to-right order of leaves of T.

For X = (T, T′) ∈ Xn, the canonical drawing (resp. smooth drawing) of X is the su-
perimposition of the canonical (resp. smooth) drawing of T′ with the mirror canonical
(resp. smooth) drawing of T, see Figure 4. In this case, the upper diagram-drawing of X is
the diagram-drawing of T′, while the lower diagram-drawing of X is the diagram-drawing
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,

T T ′

Figure 4: A pair (T, T′) of binary trees of the same size, its canonical drawing, and its
smooth drawing.

of mir(T) rotated by a half-turn. The diagram-drawing of X is the superimposition of the
upper and lower diagram-drawings of X. As a convention, in each of the 3 represen-
tations of X, the arcs are blue (resp. red) in the upper (resp. lower) part. Let ϕ be the
mapping that sends X ∈ Xn to its diagram-drawing, see Figure 5.

Definition 2.2. A meandering diagram of size n is a non-crossing arc-diagram M with
2n + 1 points, at 0, 1

2 , 1, . . . , n − 1
2 , n on the x-axis, colored black for integral points and

white for half-integral ones, with all upper (resp. lower) arcs having a black (resp. white)
left end and a white (resp. black) right end, such that each white point is incident to
exactly one upper (resp. lower) arc. The underlying graph of M is the graph with black
points as vertices, where each white point yields an edge connecting the black endpoints
of its incident upper and lower arcs. A meandering tree is a meandering diagram whose
underlying graph is a tree. Let MDn (resp. MT n) be the set of meandering diagrams
(resp. meandering trees) of size n.

Proposition 2.3. For n ≥ 1, the mapping ϕ is a bijection between Xn and MDn. It specializes
to a bijection between In and MT n.

Sketch of proof. For the first statement, the inverse ψ of ϕ is obtained by the equivalence
between the representations of binary trees discussed above. For M ∈ MDn, we con-
sider the upper part of M as an upper diagram-drawing, from which we compute the
corresponding smooth drawing, and turn it into the canonical drawing of a binary tree
T′. We do the same for the half-turn of the lower diagram-drawing, yielding a binary
tree, with T its mirror. Then we take ψ(M) = (T, T′).

For the second statement, we use the fact that X ∈ Xn is in In if and only if its smooth
drawing has no pair of arcs as on the left side of Figure 6, which follows from the bracket-
vector characterization of Tamari intervals, and is closely related to the Tamari diagrams
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. . . . . .. . . . . . . . . . . .. . . . . .

Figure 5: Left: The action of ϕ on each segment of consecutive points on the x-axis
of the smooth drawing of X ∈ Xn (the shorter blue and red arcs in the left drawing
may be reduced to a point). Right: the diagram-drawing M = ϕ(X) for the pair X in
Figure 4, which is a meandering tree, meaning X ∈ In by Proposition 2.3.

. . . . . . . . .

x′
` x` x′

r xr< ≤ <

a′

a

. . . . . . . . .

x′
`

x`− 1
2

xr< << x′
r+

1
2

Figure 6: The forbidden pattern for X ∈ Xn to be in In (left) corresponds via ϕ to the
forbidden pattern for M ∈ MDn to be in MT n (right).

in [8]. We then show that M ∈ MDn is in MT n if and only if it has no pair of arcs as
on the right side of Figure 6, and that these patterns are in correspondence via ϕ.

Remark 2.4. Each diagram M ∈ MDn yields a relation R on integers in [n] where i R j if
the edge {aj, bj} of the underlying graph in Definition 2.2 associated to the white point
j − 1

2 satisfies [i − 1, i] ⊆ [aj, bj]. It can be shown that R defines a poset if and only if
M ∈ MT n. In this case, by construction, ([n], R) is an interval-poset defined in [7].
Let I = ψ(M), by Proposition 2.3, we have I ∈ In. We checked that ([n], R) is the
interval-poset of I under the bijection in [7].

Recalling Remark 2.1, the mapping ϕ can be formulated simply in terms of the
bracket-vector of T and dual bracket-vector of T′.

Proposition 2.5. Let (T, T′) ∈ Xn, V(T) = (a1, . . . , an), and V′(T′) = (b1, . . . , bn). Then
ϕ(X) is given by its lower arcs (t − 1

2 , t + at) and upper arcs (t − 1
2 , t − bt − 1) for all t ∈ [n].
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3 Blossoming trees and their meandering representation

We consider the following trees, which are in bijection with simple triangulations [15].

Definition 3.1. A blossoming tree B is an unrooted plane tree such that each node, that is,
vertex of degree at least 2, has exactly two neighbors that are leaves, which are vertices of
degree 1. We only consider such trees with at least two nodes. Edges incident to leaves
are called buds, drawn as an outgoing arrow, and all other edges are called plain edges.
The size of B is its number of plain edges, which is also its number of nodes minus 1.

A blossoming tree is bicolored if each plain edge has one half-edge colored red and
the other blue, such that the half-edges at each node are separated by the two incident
buds into a group of blue and a group of red, one of the groups being possibly empty.
See Figure 8(a) for an example. We note that a blossoming tree yields at most two
bicolored blossoming trees, since the bicoloring is uniquely determined once the color
of a half-edge is fixed. It yields just one if and only if it possesses the half-turn symmetry.
We denote by Bn the set of bicolored blossoming trees of size n.

Figure 7: A meandering tree and the corresponding bicolored blossoming tree.

For M ∈ MT n, we construct B ∈ Bn by adding a “left” and a “right” bud at each
black point along the x-axis, while keeping the colors of arcs, which are turned into
half-edges of plain edges in B, see Figure 7. Let γ be the mapping sending M to B.

Conversely, given a bicolored blossoming tree B, its closure, denoted by B, is con-
structed as follows, see Figure 8. For each plain edge e, we insert an edge-vertex ve in its
middle, and we attach to ve two unmatched half-edges called legs, one on each side of e.
The counterclockwise-contour of B yields a cyclic word of parentheses, whose opening
(resp. closing) ones are given by buds (resp. legs). We then match buds and legs in
a planar way, see Figure 8(b). Since B has 2n + 2 buds and 2n legs, two buds are left
unmatched. It is easily checked that the two unmatched buds of the closure B are at
distinct vertices, which are called the extremal vertices of B.

Lemma 3.2. For B ∈ Bn, let B be the closure of B, and π the subgraph of B induced by all
closure-edges, that is, those obtained by matching a bud with a leg. Then

• π is a Hamiltonian path of B whose ends are the two extremal vertices;
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(a) (b)

(c) (d)

Figure 8: (a) A bicolored blossoming tree B; (b) the matching of buds with legs; (c)
the closure B of B, where the meandric path is shown in bold; (d) the meandering tree
M = δ(B) obtained by stretching the meandric path.

• π splits half-edges of B by color;

• For any edge e = {u, v} of B corresponding to a half-edge of plain edge of B, with v the
edge-vertex end, let πe be the unique subpath of π from u to v, and σe = πe ∪ {e}, which
is a cycle. Then, the interior of σe is on the right of e traversed from u to v.

The Hamiltonian path π of B in Lemma 3.2 is called the meandric path of B. From the
first statement of Lemma 3.2, for B ∈ Bn, we may stretch the meandric path of B into
the horizontal segment {0 ≤ x ≤ n, y = 0} with 2n + 1 equally-spaced vertices, along
with arcs as semi-circles. By the second statement of Lemma 3.2, this can be done in a
unique way with the blue (resp. red) half-edges of B turned into the arcs above (resp.
below) the segment. Let M be the arc-diagram thus obtained, then the third statement
of Lemma 3.2 ensures that M ∈ MT n. We define δ as the mapping that sends B to M.

Proposition 3.3. For n ≥ 1, the mapping γ is a bijection from MT n to Bn, with δ its inverse.

4 The main bijection: properties and enumeration results

Combining Propositions 2.3 and 3.3, we obtain the following.
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Theorem 4.1. The mapping Φ := γ ◦ ϕ is a bijection from In to Bn. Its inverse is Ψ := ψ ◦ δ.

It is possible to track several parameters via the bijection. For X = (T, T′) ∈ Xn given
as it canonical drawing, and for 0 ≤ i ≤ n, the bi-degree of X at i is the pair (d, d′) such
that the right branch of T (resp. left branch of T′) ending at i on the horizontal axis has
d (resp. d′) nodes. In other words, Deg↗(T′)i = d′ and Deg↗(mir(T))n−i = d. The
canopy-type of X at i is [sr], where s = 1d′>0 and r = 1d=0 are given by indicator functions.
We note that, if X ∈ In, then the canopy-type [01] can not occur. For B ∈ Bn, the bi-degree
of a node v ∈ B is the pair (d, d′) such that d (resp. d′) is the number of red (resp. blue)
half-edges at v, and the canopy-type of v is [sr] where s = 1d′>0 and r = 1d=0.

Proposition 4.2. For X ∈ In and B = Φ(X), each index 0 ≤ i ≤ n corresponds to a node
v ∈ B of same bi-degree, and thus same canopy-type.

Remark 4.3. It seems harder to read the lengths of left branches of T and right branches of
T′. A clear way to read these lengths could yield bijective proofs of the counting formulas
for m-Tamari intervals [5] (via [14, Prop.72]) and for labeled Tamari intervals [4].

The number of entries of each canopy-type is then easy to track in bicolored blos-
soming trees using a root-decomposition, yielding the following counting formulas.

Corollary 4.4. We denote by Ji,j(n) the number of Tamari intervals of size n with i + 1 canopy-
entries [11] and j + 1 canopy-entries [00], and thus n − 1 − i − j canopy-entries [10]. Let A ≡
A(t; x, y) and B ≡ B(t; x, y) be the trivariate series specified by

A =
t

(1 − B)2

(
y +

A
1 − A

)
, B =

t
(1 − A)2

(
x +

B
1 − B

)
. (4.1)

Then we have
Ji,j(n) =

1
n
[tn+1xi+1yj+1]AB. (4.2)

In particular, using Lagrange inversion, the coefficients Si,j := Ji,j(i + j + 1) and Jk(n) :=
∑i+j=k Ji,j(n) are given by

Si,j =
1

(i + 1)(j + 1)

(
2i + j + 1

j

)(
2j + i + 1

i

)
, Jk(n) =

2
n(n + 1)

(
3n

k − 2

)(
n + 1

k

)
, (4.3)

where Si,j counts synchronized Tamari intervals, i.e., those with no canopy-entry of type [10]
(cf. [10, Section 2]).

The expression of Si,j in Equation (4.3) can be obtained using bijections in [10] or
in [11] to planar non-separable maps counted by vertices and faces. On the other hand,
the coefficients Jk(n) count Tamari intervals by size and number of synchronized entries
(type [11] or [00]), and it has been recently computed in [3] by solving functional equations,
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and via the Bernardi-Bonichon bijection building upon [11]. The derivation with our
bijection is however more direct.

Besides synchronized intervals, the bijection Φ can also be specialized to other known
families of Tamari intervals, as listed in Table 1, namely:

• modern intervals [16], i.e., intervals I = (T, T′) whose “rise” ((T, ϵ), (ϵ, T′)) is also
a Tamari interval. In this case, the rise is a “new” Tamari interval defined in [6],

• infinitely modern intervals [16], i.e., intervals such that all iterated rises are also
Tamari intervals,

• Tamari intervals corresponding to Kreweras intervals (cf. [2] and references therein)
under the standard bijection from binary trees to non-crossing partitions: the parts
are given by right branches of the binary tree with nodes labeled by infix order.

Theorem 4.5. For each of the following families of Tamari intervals, the associated bicolored
blossoming trees given by Φ are characterized by the following conditions:

• Synchronized: for each node, its two incident buds are consecutive in cyclic order.

• Modern: for every plain edge, at least one end is followed by a bud in clockwise order.

• Infinitely modern: for every path of plain edges, at least one end is followed by a bud in
clockwise-order.

• Kreweras: for every path of plain edges, at least one end is followed by a bud in counter-
clockwise order.

These conditions amount to forbidding in bicolored blossoming trees the patterns illustrated in
Figure 9. In each case, a decomposition of the corresponding trees yields a combinatorial proof of
the known counting formula, given by the first column in Table 1.

∅

∅

∅

∅

Synchronized Modern Infinitely modern Kreweras

∅

∅

. . .

. . .

Figure 9: Forbidden patterns of blossoming trees for subfamilies of Tamari intervals.

We define mir(X) for X = (T, T′) ∈ Xn as mir(X) = (mir(T′), mir(T)). We call mir
the duality on Xn, it is an involution on Xn and on In. Its name comes from the fact that
mir on binary trees is the duality map for Tamn.
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Types All, size n Self-dual, size 2m Self-dual, size 2m + 1

General
2

n(n + 1)

(
4n + 1
n − 1

)
1

3m + 1

(
4m
m

)
1

m + 1

(
4m + 2

m

)
Synchronized

2
n(n + 1)

(
3n

n − 1

)
0

1
m + 1

(
3m + 1

m

)
Modern

/ New (for size-1)
3 · 2n−1

(n + 1)(n + 2)

(
2n
n

)
2m−1

m + 1

(
2m
m

)
2m

m + 1

(
2m
m

)
Modern and
synchronized

1
n + 1

(
2n
n

)
0

1
m + 1

(
2m
m

)
Inf. modern
/ Kreweras

1
2n + 1

(
3n
n

)
1

2m + 1

(
3m
m

)
1

m + 1

(
3m + 1

m

)
Table 1: Counting formulas for Tamari intervals and self-dual ones.

Proposition 4.6. For I ∈ In, we obtain Φ(mir(I)) by switching colors of half-edges in Φ(I).
Hence, self-dual intervals are mapped by Φ to blossoming trees with half-turn symmetry.

For each of the families in Table 1, one can easily count the corresponding blossoming
trees that are half-turn symmetric. This yields the formulas shown in the second and the
third column in Table 1, which are new to our knowledge, except for Kreweras.
Remark 4.7. We define the reflection of a blossoming tree to be its mirror image. It is clear
that reflection commutes with color switch on blossoming trees, and it is transferred by
Ψ to an involution on Tamari intervals. Combined with Theorem 4.5, with forbidden
patterns illustrated in Figure 9, we see that synchronized intervals are stable by this new
involution, while infinitely modern intervals are matched with Kreweras intervals.

It was previously known that both infinitely modern intervals and Kreweras intervals
are equinumerous to ternary trees [16], but they seem to have very different structures.
Our involution somehow relates these two families. We plan to further explore proper-
ties of this new involution.
Remark 4.8. Regarding the counting formulas for self-dual intervals in Table 1, one ob-
serves that, in the cases of general and synchronized intervals, they are given by a simple
q-analogue of the formula for all intervals taken at q = −1. It would be nice to have a
natural explanation of this fact. This may come from a combinatorial analysis of blos-
soming trees.
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