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Abstract. The set of forks is a class of quivers introduced by M. Warkentin, where
every connected mutation-infinite quiver is mutation equivalent to infinitely many
forks. Let Q be a fork with n vertices, and w be a fork-preserving mutation sequence.
We show that every c-vector of Q obtained from w is a solution to a quadratic equation
of the form

n

∑
i=1

x2
i + ∑

1≤i<j≤n
±qijxixj = 1,

where qij is the number of arrows between the vertices i and j in Q. From the proof of
this result, when Q is a rank 3 mutation-cyclic quiver, every c-vector of Q is a solution
to a quadratic equation of the same form.
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1 Introduction

The mutation of a quiver Q was discovered by S. Fomin and A. Zelevinsky in their sem-
inal paper [12] where they introduced cluster algebras. It also appeared in the context
of Seiberg duality [10]. The c-vectors (and C-matrices) of Q were defined through mu-
tations in further developments of the theory of cluster algebras [13], and together with
their companions, g-vectors (and G-matrices), played fundamental roles in the study
of cluster algebras (for instance, see [7, 14, 19, 20, 22]). When Q is acyclic, positive c-
vectors are actually real Schur roots, that is, the dimension vectors of indecomposable
rigid modules over Q [5, 15, 25]. Moreover, they appear as the denominator vectors of
non-initial cluster variables of the cluster algebra associated to Q [4].

Due to the multifaceted appearance of c-vectors in important constructions, there
have been various results related to the description of c-vectors (or real Schur roots)
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of an acyclic quiver [1, 15, 16, 23, 24, 25]. In [18], K.-H. Lee and K. Lee conjectured
a correspondence between real Schur roots of an acyclic quiver and non-self-crossing
curves on a Riemann surface and proposed a new combinatorial/geometric description.
The conjecture is now proven by A. Felikson and P. Tumarkin [9] for acyclic quivers with
multiple edges between every pair of vertices. Recently, S. D. Nguyen [21] proved the
conjecture for an arbitrary acyclic (valued) quiver.

For a given (not necessarily acyclic) quiver Q, the set of quivers that are mutation
equivalent to Q is called the mutation equivalence class of Q and denoted by Mut(Q).
The quiver Q is said to be mutation-infinite if |Mut(Q)| is not finite, and mutation-finite if
|Mut(Q)| < ∞. The mutation-finite quivers are completely classified, and relatively well
studied. On the other hand, mutation-infinite quivers still await further investigations.

A reader-friendly version of our main theorem may be stated as follows.

Theorem 1.1. Let n be any positive integer. Let P be a mutation-infinite connected quiver with n
vertices. Then there exist an infinite number of pairs of a quiver Q ∈ Mut(P) and k ∈ {1, ..., n}
such that every c-vector of Q obtained from any mutation sequence not starting with k is a
solution to a quadratic equation of the form

n

∑
i=1

x2
i + ∑

1≤i<j≤n
±qijxixj = 1, (1.2)

where qij is the number of arrows between the vertices i and j in Q. There does not seem to be a
simple way of determining the exact signs of the xixj terms.

To state a more precise theorem, we need to recall the definition of forks. An abundant
quiver is a quiver such that there are two or more arrows between every pair of vertices.

Definition 1.3. [26, Definition 2.1] A fork is an abundant quiver F, where F is not acyclic
and where there exists a vertex r, called the point of return, such that

• For all i ∈ F−(r) and j ∈ F+(r) we have f ji > fir and f ji > frj, where F−(r) is the
set of vertices with arrows pointing towards r and F+(r) is the set of vertices with
arrows coming from r.

• The full subquivers induced by F−(r) and F+(r) are acyclic.

An example of a fork is given by

r

i j

3 4

5

,

where r is the point of return.
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It is known that "most" quivers in Mut(Q) of any connected mutation-infinite quiver
Q are forks, as Theorem 1.4 and Proposition 1.5 imply.

Theorem 1.4. [26, Theorem 3.2] A connected quiver is mutation-infinite if and only if it is
mutation-equivalent to a fork.

Proposition 1.5. [26, Proposition 5.2] Let G be the exchange graph of a connected mutation-
infinite quiver. A simple random walk on G will almost surely leave the fork-less part and never
come back.

A fork-preserving mutation sequence is a reduced sequence of mutations that starts
with a fork and does not mutate at its point of return. A more precise version of our
main theorem is as follows.

Theorem 1.6. Let Q be a fork, and let w be a fork-preserving mutation sequence. Every c-vector
of Q obtained from w is a solution to a quadratic equation of the form (1.2).

A quiver Q is called mutation-acyclic if it is mutation-equivalent to an acyclic quiver,
else it is called mutation-cyclic. Notably, we have discovered a counterexample to Theo-
rem 1.6 for truly arbitrary mutation-sequences w in the case of quivers on four vertices
(to appear in the full version of this abstract [8]), but the proof of the theorem provides
a stronger corollary in the three vertex case. Ahmet Seven informed us that he had
independently discovered this result.

Corollary 1.7. Let Q be a mutation-cyclic quiver with 3 vertices. Then every c-vector of Q is a
solution to a quadratic equation of the form (1.2) with n = 3.

As a byproduct of our proof, we also obtain the following theorem, which is closely
related to a result of Fomin and Neville [11, Lemma 6.14].

Theorem 1.8. Let w be a fork-preserving mutation sequence. The sign-vector (see Definition 2.3)
of Cw depends only on the signs of entries of initial exchange matrix B. In other words, the sign-
vector is independent of the number of arrows between vertices of the initial quiver Q.

Corollary 1.9. Let n be any positive integer, and let Q be a fork with n vertices. For each fork-
preserving mutation sequence w from Q, the corresponding n-tuple of reflections (rw

1 , rw
2 , . . . , rw

n )
(see Definition 2.6) depends only on the signs of entries of the initial exchange matrix B.

From this, we are able to prove that the product of reflections is equal to a Coxeter
element. More precisely, we have the following.

Theorem 1.10. Let n be any positive integer, and let Q be a fork with n vertices. For each
fork-preserving mutation sequence w from Q, we have

rw
λ(1)...r

w
λ(n) = rρ(1)...rρ(n)

for some permutations λ, ρ ∈ Sn, where Sn is the symmetric group on {1, ..., n} and r1, ..., rn
are the initial reflections. There is no currently known relation between λ and ρ.
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Corollary 1.11. Let n be any positive integer, and let Q be a fork with n vertices. For each fork-
preserving mutation sequence w from Q, there exist pairwise non-crossing and non-self-crossing
admissible curves ηw

i (see Definition 2.10) such that rw
i = ν(ηw

i ) for every i ∈ {1, ..., n}.

The above results are explored more thoroughly in our forthcoming paper [8], and
they all rely heavily on our use of l-vectors and generalized intersection matrices.

2 Preliminaries

2.1 C-matrices

Let n be a positive integer. If B = [bij] is an n × n skew-symmetric matrix, then B is in
correspondence with a quiver Q on n vertices: if bij > 0 and i ̸= j, then Q has bij arrows
from vertex i to vertex j. The statements of some theorems have been formulated in
terms of Q; however, we prefer to work with B since the description of c-vectors is more
clear in this setting. Also, for a nonzero vector c = (c1, . . . , cn) ∈ Zn, we write c > 0 if
all ci are non-negative, and c < 0 if all ci are non-positive.

Assume that M = [mij] is an n × 2n matrix with integer entries. Let I := {1, 2, . . . , n}
be the set of indices. For w = [i1, i2, . . . , iℓ], ij ∈ I , we define the matrix Mw = [mw

ij ]

inductively: the initial matrix is M for w = [ ], and assuming we have Mw, define the
matrix Mw[k] = [mw[k]

ij ] for k ∈ I with w[k] := [i1, i2, . . . , iℓ, k] by

mw[k]
ij =

{
−mw

ij if i = k or j = k,

mw
ij + sgn(mw

ik ) max(mw
ik mw

kj , 0) otherwise,
(2.1)

where sgn(a) ∈ {1, 0,−1} is the signature of a. The matrix Mw[k] is called the mutation
of Mw at index (or label) k, w and w[k] are called mutation sequences, and n is the rank.

Let B be a n× n skew-symmetric matrix. Consider the n× 2n matrix
[
B I

]
and a mu-

tation sequence w = [i1, . . . , iℓ]. After the mutations at the indices i1, . . . , iℓ consecutively,
we obtain

[
Bw Cw]

. Write their entries as

Bw =
[
bw

ij

]
, Cw =

[
cw

ij

]
=

cw
1
...

cw
n

 , (2.2)

where cw
i are the row vectors.

Definition 2.3. The matrix Cw is called a C-matrix of B for any w 1. The row vectors cw
i

are called c-vectors of B for any i and w. Each non-zero entry of cw
i will share the same

sign [6], allowing us to define the sign-vector of Cw, where the i-th entry is 1 if cw
i > 0

and −1 if cw
i < 0.

1This is slightly different from the original definition by Fomin and Zelevinsky
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2.2 Reflections and L-matrices

In order to prove Theorem 1.6, we needed to study the L-matrices arising from reflections
and a particular generalized intersection matrix associated to our exchange matrix.

Definition 2.4. A generalized intersection matrix (GIM) is a square matrix A = [aij] with
integral entries such that (1) for diagonal entries, aii = 2; (2) aij > 0 if and only if aji > 0;
(3) aij < 0 if and only if aji < 0.

Let A be the (unital) Z-algebra generated by si, ei, i = 1, 2, . . . , n, subject to the fol-
lowing relations:

s2
i = 1,

n

∑
i=1

ei = 1, siei = −ei, eisj =

{
si + ei − 1 if i = j,
ei if i ̸= j,

eiej =

{
ei if i = j,
0 if i ̸= j.

Let W be the subgroup of the units of A generated by si, i = 1, . . . , n. Note that W is
(isomorphic to) the universal Coxeter group. An element r ∈ W is called a reflection if
r2 = 1. Let R ⊂ W be the set of reflections.

From now on, let A = [aij] be an n× n symmetric GIM. Let Γ = ∑n
i=1 Zαi be the lattice

generated by the formal symbols α1, ..., αn. Define a representation π : A → End(Γ) by

π(si)(αj) = αj − ajiαi and π(ei)(αj) = δijαi, for i, j ∈ {1, ..., n}.

We suppress π when we write the action of an element of A on Γ.
Given a skew-symmetric matrix B, for each linear ordering ≺ on {1, ..., n}, we define

the associated GIM A = [aij] by

aij =


bij if i ≺ j,
2 if i = j,
−bij if i ≻ j.

(2.5)

An ordering ≺ provides a certain way for us to regard the skew-symmetric matrix B as
acyclic even when it is not.

Definition 2.6. When w = [ ], we let ri = si ∈ R for each i ∈ {1, ..., n}. For each mutation
sequence w and each i ∈ {1, ..., n}, define rw

i ∈ R inductively as follows:

rw[k]
i =

{
rw

k rw
i rw

k if bw
ik cw

k > 0,
rw

i otherwise.
(2.7)

Clearly, each rw
i is written in the form

rw
i = gw

i si(gw
i )−1, gw

i ∈ W , i ∈ {1, ..., n}.
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Definition 2.8. Let sgn = {1,−1} be the group of order 2, and consider the natural
group action sgn×Zn −→ Zn, where we identify Γ with Zn. Choose an ordering ≺ on
{1, ..., n} to fix a GIM A, and define

lw
i = gw

i (αi) ∈ Zn/ sgn, i ∈ {1, ..., n},

where we set α1 = (1, 0, ..., 0), ..., αn = (0, ..., 0, 1). Then the L-matrix Lw associated to A

is defined to be the n × n matrix whose ith row is lw
i for i ∈ {1, ..., n}, i.e., Lw =

lw
1
...

lw
n

,

and the vectors lw
i are called the l-vectors of A. Note that the L-matrix and l-vectors

associated to a GIM A implicitly depend on the representation π which is suppressed
from the notation.

With the above machinery, we show the following, which further implies Theorem
1.6.

Theorem 2.9. Let Q be a fork with n vertices, and let w be a fork-preserving mutation sequence.
For each i ∈ {1, ..., n}, there exists a diagonal matrix Dw

i such that (Dw
i )2 = 1 and lw

i = cw
i Dw

i .
In other words, the entries of l-vectors are equal to the entries of c-vectors up to sign.

2.3 Geometry of reflections

Here we review the definition of admissible curves [18, 17].
Let Q be a fork with n vertices labeled by I := {1, ..., n} and point of return r. Let σ

be the linear ordering given by r ≺ an−1 ≺ an−2 ≺ · · · ≺ a1, where a1, a2, . . . , an−1 are the
vertices of Q \ {r} and ai ≺ aj if and only if there is an arrow from j to i.

We define a labeled Riemann surface Σσ
2 as follows. Let G1 and G2 be two identical

copies of a regular n-gon. Label the edges of each of the two n-gons by Tσ(1), . . . , Tσ(n)
counter-clockwise. Fix the orientation of every edge of G1 (resp. G2) to be counter-
clockwise (resp. clockwise) as in the following picture.

σ(n)

σ(2)

σ(1)

σ(n − 1)

σ(3)

...

σ(3)

σ(n − 1)

...

σ(2)

σ(n)

2The punctured discs appeared in Bessis’ work [3]. For better visualization, here we prefer to use an
alternative description using compact Riemann surfaces with one or two marked points.
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•

•

•

•

•

•

•

•

•

•

•

•

V
Tγ

TβTα

Figure 1: This picture illustrates a portion of the universal cover Σσ, and the three arcs
Tα, Tβ, and Tγ.

Let Σσ be the (compact) Riemann surface of genus ⌊n−1
2 ⌋ obtained by gluing together

the two n-gons with all the edges of the same label identified according to their ori-
entations. The edges of the n-gons become N different curves in Σσ. If n is odd, all
the vertices of the two n-gons are identified to become one point in Σσ and the curves
obtained from the edges are loops. If n is even, two distinct vertices are shared by all
curves. Let T be the set of all curves, i.e., T = T1 ∪ · · · ∪ Tn ⊂ Σσ, and V be the set of
the vertex (or vertices) on T .

For simplicity, here we give a precise definition of an admissible curve for rank 3
quivers only, but it is straightforward to generalize to quivers of higher rank. For our ge-
ometric model on rank 3 quivers, we consider the (triangulated) torus with one marked
point along with admissible curves (see Definition 2.10). The key point here is that there
is a map from the set of admissible curves to R.

For each σ ∈ S3, let Σσ be the closed Riemann surface of genus 1 with a single marked
point V, and let Σ̃σ be the universal cover of Σσ, which can be regarded as R2. Let
α = σ(1), β = σ(2), and γ = σ(3). Fix three arcs Tα, Tβ, and Tγ on Σσ and the projection
p : Σ̃σ −→ Σσ such that p−1(Tα) = Z × R ⊂ R2, p−1(Tβ) = {(x, y) : x + y ∈ Z} ⊂ R2,
p−1(Tγ) = R×Z ⊂ R2, and p−1(V) = Z2 ⊂ R2. Hence Tα is the vertical line segment, Tβ

is the diagonal, and Tγ is the horizontal line segment. Let T = T1 ∪ T2 ∪ T3. See Figure
1.

Definition 2.10. An admissible curve is a pair consisting of a continuous function η :
[0, 1] −→ Σσ and a sequence {iℓ}k

ℓ=1 of entries with in iℓ ∈ {1, 2, 3} such that
1) η(x) = V if and only if x ∈ {0, 1};
2) if η(x) ∈ T \ {V} then η([x − ϵ, x + ϵ]) meets T transversally for sufficiently small

ϵ > 0;
3) η(xℓ) ∈ Tiℓ and ℓ ∈ {1, ..., k}, where

{x1 < · · · < xk} = {x ∈ (0, 1) : η(x) ∈ T}
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4) υ(η) ∈ R, where υ(η) := ri1 · · · rik ∈ W .

Example 2.11. In Example 3.5, when w = [1, 2, 3], the admissible curve ηw
2 has

υ(ηw
2 ) = r2r1r3r1r2r1r3r1r2.

Note that ηw
2 crosses T2, T1, T3, T1, T2, T1, T3, T1, T2 in this order.

3 Examples

In this section, we will consider the following two quivers to demonstrate our theorems:

P =

2

1 3

3 3

6

and Q =

2

1 3

3 4

5

Both quivers are mutation-cyclic [2]. Also, P and Q are forks and are mutation-equivalent
to only forks. In this section, we will consider the c-vectors of both P and Q under three
mutation sequences, namely, w = [1], w = [1, 2], and w = [1, 2, 3].

Example 3.1. An example of Theorem 1.8 is given in the table below:

Mutation Sequence [Bw|Cw]-matrix for P [Bw|Cw]-matrix for Q

w = [1]

 0 −3 6 −1 0 0
3 0 −15 0 1 0
−6 15 0 6 0 1

  0 −3 5 −1 0 0
3 0 −11 0 1 0
−5 11 0 5 0 1


w = [1, 2]

 0 3 −39 −1 0 0
−3 0 15 0 −1 0
39 −15 0 6 15 1

  0 3 −28 −1 0 0
−3 0 11 0 −1 0
28 −11 0 5 11 1


w = [1, 2, 3]

 0 −582 39 −1 0 0
582 0 −15 90 224 15
−39 15 0 −6 −15 −1

  0 −305 28 −1 0 0
305 0 −11 55 120 11
−28 11 0 −5 −11 −1


For each quiver, the sign vector of the C-matrix for w = [1], w = [1, 2], and w =

[1, 2, 3] is (−1, 1, 1), (−1,−1, 1), and (−1, 1,−1)).

Example 3.2. The quadratic equation for the quiver P is given by

x2 + y2 + z2 − 3xy − 6xz + 3yz = 1.

and the quadratic equation for Q is given by

x2 + y2 + z2 − 3xy − 5xz + 4yz = 1.
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It is easy to verify that the c-vectors

(x, y, z) = (90, 224, 15) and (x, y, z) = (−6,−15,−1)

both satisfy the quadratic equation for P and that the c-vectors

(x, y, z) = (55, 120, 11) and (x, y, z) = (−5,−11,−1)

both satisfy the quadratic equation for Q.

Example 3.3. In this example, we demonstrate Corollary 1.9. If we mutate the reflections
for both of P and Q with w = [1], then we arrive at

rw
1 = r1, rw

2 = r2, rw
3 = r1r3r1.

If we mutate both of them with w = [1, 2], then we arrive at

rw
1 = r1, rw

2 = r2, rw
3 = r2r1r3r1r2.

If we mutate both of them with w = [1, 2, 3], then we arrive at

rw
1 = r1, rw

2 = r2r1r3r1r2r1r3r1r2, rw
3 = r2r1r3r1r2.

We can see that both of these are fork-preserving mutation sequences with the same
initial orientation for the B matrix.

Example 3.4. In this example, we demonstrate Theorem 1.10. If we take the three mu-
tated reflections from Example 3.3 for w = [1], then

rw
1 rw

3 rw
2 = r3r1r2.

For w = [1, 2], we have
rw

1 rw
2 rw

3 = r3r1r2.

Finally, for w = [1, 2, 3], we have

rw
1 rw

3 rw
2 = r3r1r2.

Example 3.5. In this example, we demonstrate Corollary 1.11. If we take the three mu-
tated reflections from Example 3.3 for w = [1], then we get the following admissible
curves:

ηw
1

ηw
2

ηw
3

T3

T1T2
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For w = [1, 2] and w = [1, 2, 3], we get the following admissible curves respectively:

ηw
1

ηw
2

ηw
3

ηw
1

ηw
2

ηw
3

Note that these curves are pairwise non-crossing as well as non-self-crossing. Also,
using the labeling of the 3 arcs from the picture for the first set of non-crossing curves,
we can recover the sequence of reflections from the curves in each picture and confirm
the correspondence.

Example 3.6. To demonstrate how to calculate l-vectors, we consider lw
2 for the quiver Q

with w = [1, 2, 3] and linear ordering 2 ≺ 1 ≺ 3. First, construct the GIM

A =

 2 −3 −5
−3 2 4
−5 4 2

 .

Then consider the following matrices in M3×3(Z).

S1 =

−1 0 0
3 1 0
5 0 1

 , S2 =

1 3 0
0 −1 0
0 −4 1

 , S3 =

1 0 5
0 1 −4
0 0 −1

 .

Using the sequence of reflections from Example 3.3 and the definition of l-vectors, we
know that

lw
2 = s2s1s3s1(α2)

= (ST
2 ST

1 ST
3 ST

1 (α
T
2 ))

T

= α2S1S3S1S2

= (α2)S1S3S1S2

= (3α1 + α2)S3S1S2

= (3α1 + α2 + 11α3)S1S2

= (55α1 + α2 + 11α3)S2

= 55α1 + 120α2 + 11α3.

These calculations can then be used to demonstrate Theorem 2.9. Compare the table
below with the one given in Example 3.1.
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Mutation Sequence L-matrix for P L-matrix for Q

w = [1]

1 0 0
0 1 0
6 0 1

 1 0 0
0 1 0
5 0 1


w = [1, 2]

1 0 0
0 1 0
6 15 1

 1 0 0
0 1 0
5 11 1


w = [1, 2, 3]

 1 0 0
90 224 15
6 15 1

  1 0 0
55 120 11
5 11 1


Acknowledgements
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