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Counting unicellular maps under cyclic
symmetries
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Abstract. We count unicellular maps (matchings of the edges of a 2n-gon) of arbitrary
genus with respect to the 2n-rotation symmetries of the polygon. An associated gen-
erating function that keeps track of the number of symmetric vertices of the resulting
map generalizes the celebrated Harer-Zagier formula.

The answer to this enumerative question is not in the form of the usual cyclic siev-
ing phenomenon (CSP), but does recover in the leading terms (genus-0 maps) a well
known CSP for the Catalan numbers. The approach is representation theoretic, in that
we relate symmetric unicellular maps with factorizations of the Coxeter element in a
reflection group of type G(m, 1, n).
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1 Introduction

Unicellular maps are the 3-constellations of the form σαc = 1 where σ, α, c ∈ S2n, σ is a
fixed point free involution, α an arbitrary permutation, and c := (1, 2, . . . , 2n) the long
cycle. This corresponds to gluing the edges of a 2n-gon (the gluing pattern is encoded
in the involution σ).

The genus g of a unicellular map is given as 2g = n + 1 − cyc(α) (see also [6, p. 23]).
The Harer-Zagier numbers εg(n) count the unicellular maps with n edges and genus g
and they have a very nice generating function formula:

1
(2n − 1)!! ∑

g
εg(n)Φn+1−2g(X) =

(1 + X)n

(1 − X)n+2 , (1.1)

where the polynomials Φn(X) are essentially the Eulerian polynomials; they are defined
as follows:

Φn(X) =
∑n−1

k=0 A(n, k)Xk

(1 − X)n+1 or equivalently Φn(X) =
∞

∑
k=0

(k + 1)nXk, (1.2)

where A(n, k) is an Eulerian number (i.e., the number of permutations in Sn with k
descents).
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Definition 1.1 (Rotation of constellations). There is a natural cyclic action Ψ of order 2n
on unicellular maps that corresponds to rotating the polygon. In terms of the constella-
tion, the action is given as

Ψ
[
(σ, α, c)

]
= (c−1σc, c−1αc, c).

To count symmetric 3-constellations, we essentially need to count the factorizations
σαc = 1 that are fixed by simultaneous conjugation by some power cN of c. Equivalently
this means counting factorizations σαc = 1 in S2n all of whose factors σ, α, c also belong
to the centralizer ZS2n(c

N). Now, the centralizer ZS2n(c
N) is just the reflection group1

G(m, 1, 2n/m) where m is the order of cN (i.e. m = 2n/ gcd(2n, N)). From now on, we
will always assume that N divides 2n and we will always have mN = 2n.

That is, the problem of counting 3-constellations fixed under Ψr is equivalent to
counting factorizations σαc = 1 in G(m, 1, N) = ZS2n(c

r) where σ belongs to the con-
jugacy classes of G(m, 1, N) ≤ S2n into which the class S2n of fixed point free involu-
tions has been decomposed. This problem turns out to be particularly easy because
c = (1, 2, . . . , 2n) is a Coxeter element also in G(m, 1, N).

There is however a caveat: In the Harer-Zagier formula (1.1), the genus is directly
related to the reflection length of α so we can keep track of it with representation theory.
Here, the genus of a symmetric constellation is related to the length of α as an element
in S2n but this is not the same as (or a multiple of) its length as an element in G(m, 1, N).
There are two natural approaches here; track the length as an element in G(m, 1, N) and
interpret it as a combinatorial statistic on the map (this succeeds with Theorem 3.8) or
define a new length function to track the genus and attempt to express it representation-
theoretically (a first attempt here fails; we discuss it in Section 4).

We present the first approach in Section 3, where we interpret the usual length func-
tion for G(m, 1, N) as a combinatorial (but sadly not topological) statistic on the maps.
Then, Zagier’s proof [14] of the Harer-Zagier formula (1.1) generalizes essentially out of
the box; we have existing theorems that replace all the ingredients of the proof and we
prove Theorem 3.8 which is a direct generalization of (1.1).

In Section 4 we define a new length function for G(m, 1, N) that corresponds to the
topological genus; it is a class invariant and is even somewhat compatible with a factor-
ization in the group algebra of G(m, 1, N) which gives us some control over the formulas
coming from the Frobenius lemma. It is not clear though what the analog of the Eulerian
polynomials Φn(X) of (1.2) should be in this case (nor whether such an analog should a
priori exist!).

We first start with a mini review of Zagier’s proof of the Harer-Zagier formula (1.1)
to set up a pattern of how the proofs would go in these two approaches.

1Note that the reflections of G(m, 1, N) do not come from transpositions of S2n; they come from some
elements of type

(
2m, 12n−2m) (the transposition-like ones) and some other ones –multiple cycle types– for

the diagonal-like reflections; see Example 3.3 and Remark 3.4.
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2 Main ingredients of Zagier’s proof of the Harer-Zagier
formula

We give in this section the main ingredients in Zagier’s proof (or a re-imagining of
Zagier’s proof relying more on Jucys-Murphy elements). We will generalize each of
them in the next section.

The first is a direct application of the Frobenius lemma from representation theory
(recall: n + 1 − 2g = cyc(α) = 2n − ℓR(α)).

∑
g

εg(n)Xn+1−2g =
(2n − 1)!!
(2n)!

· ∑
χ∈Ŝ2n

χ(σ)χ(c) · χ̃

(
∑

w∈S2n

wX2n−ℓR(w)

)
, (A)

where σ is any fixed point free involution in S2n, c any fixed long cycle, and χ̃ denotes
the normalized character χ (i.e. χ̃(a) := χ(a)/χ(1) for an element a ∈ C[S2n]).

The second ingredient is a well known factorization in the symmetric group algebra:

∑
w∈S2n

wX2n−ℓR(w) = X(X + J2)(X + J3) · · · (X + J2n), (B1)

where Ji := (1i) + · · ·+ (i − 1i) is the i-th Jucys-Murphy element. As an application of
this factorization we know for instance that the normalized traces appearing in (A) are
just binomials:

1
(2n)!

· χ̃k

(
∑

w∈S2n

wX2n−ℓR(w)

)
=

(
X + 2n − 1 − k

2n

)
, (B2)

where χk is the k-th exterior power of the reflection representation of S2n (it is a direct
application of the Murnaghan-Nakayama rule that only these irreducible characters are
non-zero on the long cycle c).

The third ingredient is that the eulerian polynomials of (1.2) give exactly the change-
of-basis between the binomials in X that appear above and the monomials Xn:

n

∑
k=1

εkXk =
n

∑
k=1

bk

(
X + n − k

k

)
if and only if (1 − X)n+1

n

∑
k=1

εkΦk(X) =
n

∑
k=1

bkXk−1.

(C)
This has many proofs but it is very conveniently stated in Theorems 2.5 and 2.10 in [8].

The final ingredient is the usual relation (as in [2] or [3]) between the characters χ

such that χ(c) ̸= 0, the Coxeter numbers cχ = k(2n), the exterior powers χk, and hence
the matrix of an element in the reflection representation of S2n:

∑
χ∈Ŝ2n

χ(σ)χ(c)X
cχ
2n =

2n−1

∑
k=0

χk(σ)(−1)kXk =
p(σ; X)

1 − X
, (D)
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where p(σ; X) is the characteristic polynomial of σ in the standard (2n)-dimensional
representation of S2n. Together (A),(B2),(C),(D) give us the Harer-Zagier formula (1.1)
because p(σ; X) = (1 − X2)n.

3 Counting symmetric maps keeping track of G(m, 1, N)-
length

In this section we generalize the Harer-Zagier formula (1.1) in a way that has all of
the ingredients of Zagier’s proof from the previous section working out of the box. To
have a meaningful interpretation of the theorem however we will give first a combinatorial
interpretation of the G(m, 1, N)-length.

Recall that the for the 3-constellation π = (σ, α, c) the number cyc(α) of cycles of α

equals the number of vertices v(π) of the combinatorial map π and also that

n + 1 − 2g = 2n − ℓS2n(α) = cyc(α) = v(π).

So, then the Harer-Zagier formula (1.1) can be rephrased as

1
(2n − 1)!! ∑

v
Ev(n)Φv(X) =

(1 + X)n

(1 − X)n+2 , (3.1)

where Ev(n) = ε(n+1−2v)/2(n) counts the number of unicellular maps π witn n edges
and v vertices.

Now, we will give an explicit definition of unicellular maps with rotational symmetry
at least m:

Definition 3.1. Let n, m, N be positive integers such that mN = 2n. We denote by Cm(N)
the number of 3-constellations π = (σ, α, c) with factors from S2n that are fixed by the
operation ΨN (i.e. have symmetry at least m):

Cm(N) =
{
(σ, α) ∈ S2

2n | σαc = σ2 = 1, ℓS2n(σ) = n, c−NσcN = σ, c−Nαc = α
}

.

As we mentioned earlier, we can enumerate Cm(N) by counting certain factoriza-
tions in G(m, 1, N). The factors σ, α, c are still elements of G(m, 1, N) and c is its Coxeter
element, but the class in S2n of fixed point free involutions σ breaks into multiple conju-
gacy classes (see Remark 3.4) and the new length ℓG(m,1,N)(α) is not a function of g (or
equivalently v(π)). For this reason we define these two statistics:

Definition 3.2. Let n, m, N be positive integers such that mN = 2n and let σ be a fixed
point free involution of S2n such that c−NσcN = σ. We write dm(σ) for the number of
ΨN-orbits of centrally symmetric 2-cycles of σ. (A centrally symmetric transposition is one
of the form (i, n + i).)
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Figure 1: For the involution σ of the figure, we have d4(σ) = 1 but d2(σ) = 2.

Example 3.3. Consider the involution σ := (1, 12)(2, 8)(3, 4)(5, 11)(6, 7)(9, 10) of S12.
There are two centrally symmetric 2-cycles: (2, 8) and (5, 11). The involution is symmetric
both under Ψ3 (conjugation by c3 or rotation of order m = 4) and under Ψ6 (conjugation
by c6 or rotation of order m = 2). But the cycles (2, 8) and (5, 11) form two orbits under
Ψ6 but only one orbit under Ψ3. See Figure 1.

Remark 3.4 (dm detects conjugacy class in G(m, 1, N)). The point of this definition is that
it detects the conjugacy class of the involution σ as an element of G(m, 1, N). The num-
ber dm(σ) counts on how many indices from 1 to N the involution σ acts diagonally-
like (maps i to −i). For Example 3.3 above, the centralizer ZS2n(c

3) is isomorphic to the
group G(4, 1, 3) where the coordinates of the (3-dimensional ambient space) correspond
to the three sets {1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}. In this case σ becomes (1, 3−i)(2, 2̄):
the first 2-cycle (1, 3−i) corresponds to the part (1, 12)(4, 3)(7, 6)(10, 9) and the 2-cycle
(2, 2̄) corresponds to the part (2, 8)(5, 11). Then, the d4 value here is d4(σ) = 1 because
the involution σ has a single diagonal position in G(4, 1, 3).

Similarly the centralizer ZS2n(c
6) is isomorphic to the group G(2, 1, 6) with coordi-

nates corresponding to the three sets {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}, {6, 12}. In
this case σ becomes (1, 6̄)(2, 2̄)(3, 4)(5, 5̄) and thus d2(σ) = 2 since σ has two diagonal
positions in G(2, 1, 6).

We need to also replace the quantity v(π) (the number of vertices of the map π) with
a new object that keeps track of the rotational symmetry of the vertices of the polygon
that were identified into vertices of the map.

Definition 3.5. For any 3-constellation π = (σ, α, c) in S2n, and any numbers m, N such
that mN = 2n, we define vm

free(π) to be the number of vertices of π (equivalently cycles
of α) that are not fixed by any power of ΨN (apart from of course ΨNm = Id).

Proposition 3.6. If a 3-constellation π = (σ, α, c) in S2n is fixed under some power ΨN, then if
m is such that mN = 2n,

ℓG(m,1,N)(α) =
2n − vm

free(π)

m
.
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Before finally stating the main theorem of this section, we need to define the general-
izations of the polynomials Φn(X) of (1.2). We will be using a well known generalization
of Eulerian polynomials for G(m, 1, N) that encodes the notion of descent due to Stein-
grímsson [12].

Definition 3.7. For any two positive integers m, N we define the polynomials

Φm,N(X) =
∑N

k=0 A(m, N, k)Xk

(1 − X)N+1 or equivalently Φm,N(X) =
∞

∑
k=0

(mk + 1)NXk,

where A(m, N, k) is the number of elements in G(m, 1, N) with k descents, see [12,
Thm. 17].

With these interpretations, we are ready to state and give a (sketch of the) proof of the
following generalization of the Harer-Zagier theorem (1.1) that counts maps that remain
invariant under a given rotation of the initial polygon.

Theorem 3.8. For any n, m, N, k ∈ Z>0 such that 2n = mN, the numbers Ek,v(m, N) of 3-
constellations π = (σ, α, c) in S2n with dm(σ) = k and vm

free(π) = mv (see Defn. 3.2 and
Defn. 3.5) such that ΨN(π) = π (see Defn. 1.1) can be calculated via:

1

(N
k ) · (N − k − 1)!! · m

N−k
2

∑
v
Ek,v(m, N) · Φm,v(X) =

1
1 − X

·
(

1 + X
1 − X

) N−k
2

,

where the polynomials Φm,v(X) are as in Defn. 3.7.

Sketch. All the ingredients (A),(B2),(C),(D) are readily available. (A) is just the Frobenius
lemma. For (B2) see [8, Prop. 3.2] but it can also be shown using the following version
of (B1):

∑
w∈G(m,1,N)

wXN−ℓG(m,1,N)(w) = (X + J1)(X + J2) · · · (X + Jn),

where Ji = (1, i) + · · ·+ (i − 1, iξ̄) + (i, iξ) + . . . + (i, iξ̄) are a version of the JM elements.
The approach of [10, Prop. 4.8] expresses the character values on these generalized Jucys-
Murphy elements as certain content calculations, see also [9, Section 4.2] or [15].

The change-of-basis (C) is in Theorems 3.17 and 3.18 of [8]. The final ingredient
(D) comes from our previous work, joint with Chapuy, in [2, Section 9.5.2] where we
prove an equality in G(m, 1, N) between ∑ χ(c)χ and a virtual character that involves
the exterior powers of certain N-dimensional representations that are analogues of the
standard representation of SN.

Remark 3.9. The genus 0 case, or equivalently cyc(α) = n + 1, appears only if vfree(π) =
n + 1 (no symmetry) or vfree(π) = n (π has some symmetry). In this way, Theorem 3.8
recovers the known symmetry count in the form of a CSP [11, §7] in the genus-0 case
(there the matchings must be non-crossing and determine a (different) noncrossing par-
tition of the odd vertices 1, 3, . . . 2n − 1; it is this object that is studied in [11]).
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Remark 3.10. The approach described above can give a complete version of Zagier’s
main theorem from [14] (i.e. for any conjugacy class of G(m, 1, N) not just the fixed
point free involutions).

Remark 3.11. The approach of this section can be generalized to other factorization
counting questions, where conjugation by the long cycle is a natural symmetry. For in-
stance, in works of Goupil-Schaeffer [4] and Bernardi-Morales [1], one could try to count
symmetric factorizations by transfering the question to some G(m, 1, n) group. Factor-
izations of the Coxeter element c ∈ G(m, 1, n) have been extensively studied by Lewis-
Morales, where the authors also observe [7, §8.2] in their setting that the G(m, 1, n)-
factorizations cannot keep track of the topological genus of a corresponding map.

4 Counting symmetric maps keeping track of genus

The main disadvantage of Theorem 3.8 is that the enumeration cannot keep track of the
topological genus of the map π. We discuss in this section a partial attempt to resolve
this. We define a new length function in G(m, 1, N) given as

ℓsp(w) := ℓSmN(w),

that is the symmetric length of w ∈ G(m, 1, N) is its length as an element of SmN. Notice
that this is a class function since if two elements are conjugate in G(m, 1, N) then they
are also conjugate in SmN hence have the same length.

Then, a generalization of (1.1) in the spirit of Theorem 3.8 but using ℓsp(w) instead
of ℓG(m,1,N)(w) would rely on understanding

∑
χ∈ ̂G(m,1,N)

χ(σk)χ(c) · ∑
w∈G(m,1,N)

χ(w)

χ(1)
Xℓsp(w),

where σk is any involution with dm(σk) = k.
It is not difficult to see that there is a factorization

∑
w∈G(m,1,N)

wXℓsp(w) =
[
1 + Xm−1(11ξ) + . . . + Xm−1(11ξ̄)

]
×

×
[
1 + Xm(12) + . . . + Xm(12ξ) + . . . + Xm−1(22ξ̄)

]
· · ·

where each reflection τ contributes the term Xℓsp(τ).
This factorization might be seen as an analogue of (B1) and we can certainly calculate

the corresponding traces for irreducible characters (either manually or by the techniques
of [13, Lemma 3.7], or even by following Jucys original argument [5, Section 4] and
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relying on existing determinations of the eigenvalues of these generalized Jucys-Murphy
elements on eigenvectors indexed by tuples of Young tableau as for instance [10]).

However, we have no analogue of (B2): Even though Sage experiments suggest that
we always have nice formulas for ∑

w∈G(m,1,N)

χ̃(w)Xℓsp(w), it is not clear that there exists

a change of basis analogous to (C) (or even that one might exist: we need to transform
more than n polynomials; the corresponding polynomials with XℓG(m,1,N) depend only on
the Coxeter number of χ when χ(c) ̸= 0 but with ℓsp this is no longer true.
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