Counting unicellular maps under cyclic symmetries

Theo Douvropoulos* ${ }^{* 1}$
${ }^{1}$ Department of Mathematics, Brandeis University, Waltham USA

Abstract

We count unicellular maps (matchings of the edges of a $2 n$-gon) of arbitrary genus with respect to the $2 n$-rotation symmetries of the polygon. An associated generating function that keeps track of the number of symmetric vertices of the resulting map generalizes the celebrated Harer-Zagier formula. The answer to this enumerative question is not in the form of the usual cyclic sieving phenomenon (CSP), but does recover in the leading terms (genus-0 maps) a well known CSP for the Catalan numbers. The approach is representation theoretic, in that we relate symmetric unicellular maps with factorizations of the Coxeter element in a reflection group of type $G(m, 1, n)$.

Keywords: Harer-Zagier formula, unicellular maps, reflection groups, cyclic sieving

1 Introduction

Unicellular maps are the 3-constellations of the form $\sigma \alpha c=\mathbf{1}$ where $\sigma, \alpha, c \in S_{2 n}, \sigma$ is a fixed point free involution, α an arbitrary permutation, and $c:=(1,2, \ldots, 2 n)$ the long cycle. This corresponds to gluing the edges of a $2 n$-gon (the gluing pattern is encoded in the involution σ).

The genus g of a unicellular map is given as $2 g=n+1-\operatorname{cyc}(\alpha)$ (see also [6, p. 23]). The Harer-Zagier numbers $\varepsilon_{g}(n)$ count the unicellular maps with n edges and genus g and they have a very nice generating function formula:

$$
\begin{equation*}
\frac{1}{(2 n-1)!!} \sum_{g} \varepsilon_{g}(n) \Phi_{n+1-2 g}(X)=\frac{(1+X)^{n}}{(1-X)^{n+2}} \tag{1.1}
\end{equation*}
$$

where the polynomials $\Phi_{n}(X)$ are essentially the Eulerian polynomials; they are defined as follows:

$$
\begin{equation*}
\Phi_{n}(X)=\frac{\sum_{k=0}^{n-1} A(n, k) X^{k}}{(1-X)^{n+1}} \quad \text { or equivalently } \quad \Phi_{n}(X)=\sum_{k=0}^{\infty}(k+1)^{n} X^{k} \tag{1.2}
\end{equation*}
$$

where $A(n, k)$ is an Eulerian number (i.e., the number of permutations in S_{n} with k descents).

[^0]Definition 1.1 (Rotation of constellations). There is a natural cyclic action Ψ of order $2 n$ on unicellular maps that corresponds to rotating the polygon. In terms of the constellation, the action is given as

$$
\Psi[(\sigma, \alpha, c)]=\left(c^{-1} \sigma c, c^{-1} \alpha c, c\right) .
$$

To count symmetric 3-constellations, we essentially need to count the factorizations $\sigma \alpha c=1$ that are fixed by simultaneous conjugation by some power c^{N} of c. Equivalently this means counting factorizations $\sigma \alpha c=\mathbf{1}$ in $S_{2 n}$ all of whose factors σ, α, c also belong to the centralizer $Z_{S_{2 n}}\left(c^{N}\right)$. Now, the centralizer $Z_{S_{2 n}}\left(c^{N}\right)$ is just the reflection group ${ }^{1}$ $G(m, 1,2 n / m)$ where m is the order of c^{N} (i.e. $m=2 n / \operatorname{gcd}(2 n, N)$). From now on, we will always assume that N divides $2 n$ and we will always have $m N=2 n$.

That is, the problem of counting 3-constellations fixed under Ψ^{r} is equivalent to counting factorizations $\sigma \alpha c=\mathbf{1}$ in $G(m, 1, N)=Z_{S_{2 n}}\left(c^{r}\right)$ where σ belongs to the conjugacy classes of $G(m, 1, N) \leq S_{2 n}$ into which the class $S_{2 n}$ of fixed point free involutions has been decomposed. This problem turns out to be particularly easy because $c=(1,2, \ldots, 2 n)$ is a Coxeter element also in $G(m, 1, N)$.

There is however a caveat: In the Harer-Zagier formula (1.1), the genus is directly related to the reflection length of α so we can keep track of it with representation theory. Here, the genus of a symmetric constellation is related to the length of α as an element in $S_{2 n}$ but this is not the same as (or a multiple of) its length as an element in $G(m, 1, N)$. There are two natural approaches here; track the length as an element in $G(m, 1, N)$ and interpret it as a combinatorial statistic on the map (this succeeds with Theorem 3.8) or define a new length function to track the genus and attempt to express it representationtheoretically (a first attempt here fails; we discuss it in Section 4).

We present the first approach in Section 3, where we interpret the usual length function for $G(m, 1, N)$ as a combinatorial (but sadly not topological) statistic on the maps. Then, Zagier's proof [14] of the Harer-Zagier formula (1.1) generalizes essentially out of the box; we have existing theorems that replace all the ingredients of the proof and we prove Theorem 3.8 which is a direct generalization of (1.1).

In Section 4 we define a new length function for $G(m, 1, N)$ that corresponds to the topological genus; it is a class invariant and is even somewhat compatible with a factorization in the group algebra of $G(m, 1, N)$ which gives us some control over the formulas coming from the Frobenius lemma. It is not clear though what the analog of the Eulerian polynomials $\Phi_{n}(X)$ of (1.2) should be in this case (nor whether such an analog should a priori exist!).

We first start with a mini review of Zagier's proof of the Harer-Zagier formula (1.1) to set up a pattern of how the proofs would go in these two approaches.

[^1]
2 Main ingredients of Zagier's proof of the Harer-Zagier formula

We give in this section the main ingredients in Zagier's proof (or a re-imagining of Zagier's proof relying more on Jucys-Murphy elements). We will generalize each of them in the next section.

The first is a direct application of the Frobenius lemma from representation theory (recall: $n+1-2 g=\operatorname{cyc}(\alpha)=2 n-\ell_{R}(\alpha)$).

$$
\begin{equation*}
\sum_{g} \varepsilon_{g}(n) X^{n+1-2 g}=\frac{(2 n-1)!!}{(2 n)!} \cdot \sum_{\chi \in \widehat{S_{2 n}}} \chi(\sigma) \chi(c) \cdot \widetilde{\chi}\left(\sum_{w \in S_{2 n}} w X^{2 n-\ell_{R}(w)}\right), \tag{A}
\end{equation*}
$$

where σ is any fixed point free involution in $S_{2 n}, c$ any fixed long cycle, and $\tilde{\chi}$ denotes the normalized character χ (i.e. $\widetilde{\chi}(a):=\chi(a) / \chi(1)$ for an element $a \in \mathbb{C}\left[S_{2 n}\right]$).

The second ingredient is a well known factorization in the symmetric group algebra:

$$
\begin{equation*}
\sum_{w \in S_{2 n}} w X^{2 n-\ell_{R}(w)}=X\left(X+J_{2}\right)\left(X+J_{3}\right) \cdots\left(X+J_{2 n}\right) \tag{B1}
\end{equation*}
$$

where $J_{i}:=(1 i)+\cdots+(i-1 i)$ is the i-th Jucys-Murphy element. As an application of this factorization we know for instance that the normalized traces appearing in (A) are just binomials:

$$
\begin{equation*}
\frac{1}{(2 n)!} \cdot \widetilde{\chi_{k}}\left(\sum_{w \in S_{2 n}} w X^{2 n-\ell_{R}(w)}\right)=\binom{X+2 n-1-k}{2 n} \tag{B2}
\end{equation*}
$$

where χ_{k} is the k-th exterior power of the reflection representation of $S_{2 n}$ (it is a direct application of the Murnaghan-Nakayama rule that only these irreducible characters are non-zero on the long cycle c).

The third ingredient is that the eulerian polynomials of (1.2) give exactly the change-of-basis between the binomials in X that appear above and the monomials X^{n} :

$$
\begin{equation*}
\sum_{k=1}^{n} \varepsilon_{k} X^{k}=\sum_{k=1}^{n} b_{k}\binom{X+n-k}{k} \quad \text { if and only if } \quad(1-X)^{n+1} \sum_{k=1}^{n} \varepsilon_{k} \Phi_{k}(X)=\sum_{k=1}^{n} b_{k} X^{k-1} . \tag{C}
\end{equation*}
$$

This has many proofs but it is very conveniently stated in Theorems 2.5 and 2.10 in [8].
The final ingredient is the usual relation (as in [2] or [3]) between the characters χ such that $\chi(c) \neq 0$, the Coxeter numbers $c_{\chi}=k(2 n)$, the exterior powers χ_{k}, and hence the matrix of an element in the reflection representation of $S_{2 n}$:

$$
\begin{equation*}
\sum_{\chi \in \widehat{S_{2 n}}} \chi(\sigma) \chi(c) X^{\frac{c}{2 n}}=\sum_{k=0}^{2 n-1} \chi_{k}(\sigma)(-1)^{k} X^{k}=\frac{\mathfrak{p}(\sigma ; X)}{1-X} \tag{D}
\end{equation*}
$$

where $\mathfrak{p}(\sigma ; X)$ is the characteristic polynomial of σ in the standard ($2 n$)-dimensional representation of $S_{2 n}$. Together (A),(B2),(C),(D) give us the Harer-Zagier formula (1.1) because $\mathfrak{p}(\sigma ; X)=\left(1-X^{2}\right)^{n}$.

3 Counting symmetric maps keeping track of $G(m, 1, N)$ length

In this section we generalize the Harer-Zagier formula (1.1) in a way that has all of the ingredients of Zagier's proof from the previous section working out of the box. To have a meaningful interpretation of the theorem however we will give first a combinatorial interpretation of the $G(m, 1, N)$-length.

Recall that the for the 3-constellation $\pi=(\sigma, \alpha, c)$ the number cyc (α) of cycles of α equals the number of vertices $\boldsymbol{v}(\boldsymbol{\pi})$ of the combinatorial map π and also that

$$
n+1-2 g=2 n-\ell_{S_{2 n}}(\alpha)=\operatorname{cyc}(\alpha)=v(\pi) .
$$

So, then the Harer-Zagier formula (1.1) can be rephrased as

$$
\begin{equation*}
\frac{1}{(2 n-1)!!} \sum_{v} \mathcal{E}_{v}(n) \Phi_{v}(X)=\frac{(1+X)^{n}}{(1-X)^{n+2}} \tag{3.1}
\end{equation*}
$$

where $\mathcal{E}_{v}(n)=\varepsilon_{(n+1-2 v) / 2}(n)$ counts the number of unicellular maps π witn n edges and v vertices.

Now, we will give an explicit definition of unicellular maps with rotational symmetry at least m :

Definition 3.1. Let n, m, N be positive integers such that $m N=2 n$. We denote by $C^{m}(N)$ the number of 3-constellations $\pi=(\sigma, \alpha, c)$ with factors from $S_{2 n}$ that are fixed by the operation Ψ^{N} (i.e. have symmetry at least m):

$$
C^{m}(N)=\left\{(\sigma, \alpha) \in S_{2 n}^{2} \mid \sigma \alpha c=\sigma^{2}=\mathbf{1}, \ell_{S_{2 n}}(\sigma)=n, c^{-N} \sigma c^{N}=\sigma, c^{-N} \alpha c=\alpha\right\} .
$$

As we mentioned earlier, we can enumerate $C^{m}(N)$ by counting certain factorizations in $G(m, 1, N)$. The factors σ, α, c are still elements of $G(m, 1, N)$ and c is its Coxeter element, but the class in $S_{2 n}$ of fixed point free involutions σ breaks into multiple conjugacy classes (see Remark 3.4) and the new length $\ell_{G(m, 1, N)}(\alpha)$ is not a function of g (or equivalently $\boldsymbol{v}(\boldsymbol{\pi})$). For this reason we define these two statistics:

Definition 3.2. Let n, m, N be positive integers such that $m N=2 n$ and let σ be a fixed point free involution of $S_{2 n}$ such that $c^{-N} \sigma c^{N}=\sigma$. We write $d_{m}(\sigma)$ for the number of $\Psi^{N_{-}}$-orbits of centrally symmetric 2-cycles of σ. (A centrally symmetric transposition is one of the form $(i, n+i)$.)

Figure 1: For the involution σ of the figure, we have $d_{4}(\sigma)=1$ but $d_{2}(\sigma)=2$.

Example 3.3. Consider the involution $\sigma:=(1,12)(2,8)(3,4)(5,11)(6,7)(9,10)$ of S_{12}. There are two centrally symmetric 2-cycles: $(2,8)$ and $(5,11)$. The involution is symmetric both under Ψ^{3} (conjugation by c^{3} or rotation of order $m=4$) and under Ψ^{6} (conjugation by c^{6} or rotation of order $m=2$). But the cycles $(2,8)$ and $(5,11)$ form two orbits under Ψ^{6} but only one orbit under Ψ^{3}. See Figure 1.

Remark 3.4 (d_{m} detects conjugacy class in $G(m, 1, N)$). The point of this definition is that it detects the conjugacy class of the involution σ as an element of $G(m, 1, N)$. The number $d_{m}(\sigma)$ counts on how many indices from 1 to N the involution σ acts diagonallylike (maps i to $-i$). For Example 3.3 above, the centralizer $Z_{S_{2 n}}\left(c^{3}\right)$ is isomorphic to the group $G(4,1,3)$ where the coordinates of the (3-dimensional ambient space) correspond to the three sets $\{1,4,7,10\},\{2,5,8,11\},\{3,6,9,12\}$. In this case σ becomes $\left(1,3^{-i}\right)(2, \overline{2})$: the first 2-cycle $\left(1,3^{-i}\right)$ corresponds to the part $(1,12)(4,3)(7,6)(10,9)$ and the 2 -cycle $(2, \overline{2})$ corresponds to the part $(2,8)(5,11)$. Then, the d_{4} value here is $d_{4}(\sigma)=1$ because the involution σ has a single diagonal position in $G(4,1,3)$.

Similarly the centralizer $Z_{S_{2 n}}\left(c^{6}\right)$ is isomorphic to the group $G(2,1,6)$ with coordinates corresponding to the three sets $\{1,7\},\{2,8\},\{3,9\},\{4,10\},\{5,11\},\{6,12\}$. In this case σ becomes $(1, \overline{6})(2, \overline{2})(3,4)(5, \overline{5})$ and thus $d_{2}(\sigma)=2$ since σ has two diagonal positions in $G(2,1,6)$.

We need to also replace the quantity $\boldsymbol{v}(\boldsymbol{\pi})$ (the number of vertices of the map $\boldsymbol{\pi}$) with a new object that keeps track of the rotational symmetry of the vertices of the polygon that were identified into vertices of the map.

Definition 3.5. For any 3-constellation $\pi=(\sigma, \alpha, c)$ in $S_{2 n}$, and any numbers m, N such that $m N=2 n$, we define $\boldsymbol{v}_{\text {free }}^{m}(\boldsymbol{\pi})$ to be the number of vertices of π (equivalently cycles of α) that are not fixed by any power of Ψ^{N} (apart from of course $\Psi^{N m}=$ Id).
Proposition 3.6. If a 3-constellation $\pi=(\sigma, \alpha, c)$ in $S_{2 n}$ is fixed under some power Ψ^{N}, then if m is such that $m N=2 n$,

$$
\ell_{G(m, 1, N)}(\alpha)=\frac{2 n-v_{\text {free }}^{m}(\pi)}{m}
$$

Before finally stating the main theorem of this section, we need to define the generalizations of the polynomials $\Phi_{n}(X)$ of (1.2). We will be using a well known generalization of Eulerian polynomials for $G(m, 1, N)$ that encodes the notion of descent due to Steingrímsson [12].
Definition 3.7. For any two positive integers m, N we define the polynomials

$$
\Phi_{m, N}(X)=\frac{\sum_{k=0}^{N} A(m, N, k) X^{k}}{(1-X)^{N+1}} \quad \text { or equivalently } \quad \Phi_{m, N}(X)=\sum_{k=0}^{\infty}(m k+1)^{N} X^{k}
$$

where $A(m, N, k)$ is the number of elements in $G(m, 1, N)$ with k descents, see [12, Thm. 17].

With these interpretations, we are ready to state and give a (sketch of the) proof of the following generalization of the Harer-Zagier theorem (1.1) that counts maps that remain invariant under a given rotation of the initial polygon.
Theorem 3.8. For any $n, m, N, k \in \mathbb{Z}_{>0}$ such that $2 n=m N$, the numbers $\mathcal{E}_{k, v}(m, N)$ of 3constellations $\pi=(\sigma, \alpha, c)$ in $S_{2 n}$ with $d_{m}(\sigma)=k$ and $\boldsymbol{v}_{\text {free }}^{m}(\boldsymbol{\pi})=m v$ (see Defn. 3.2 and Defn. 3.5) such that $\Psi^{N}(\pi)=\pi$ (see Defn. 1.1) can be calculated via:

$$
\frac{1}{\binom{N}{k} \cdot(N-k-1)!!\cdot m^{\frac{N-k}{2}}} \sum_{v} \mathcal{E}_{k, v}(m, N) \cdot \Phi_{m, v}(X)=\frac{1}{1-X} \cdot\left(\frac{1+X}{1-X}\right)^{\frac{N-k}{2}}
$$

where the polynomials $\Phi_{m, v}(X)$ are as in Defn. 3.7.
Sketch. All the ingredients (A),(B2),(C),(D) are readily available. (A) is just the Frobenius lemma. For (B2) see [8, Prop. 3.2] but it can also be shown using the following version of (B1):

$$
\sum_{w \in G(m, 1, N)} w X^{N-\ell_{G(m, 1, N)}(w)}=\left(X+J_{1}\right)\left(X+J_{2}\right) \cdots\left(X+J_{n}\right)
$$

where $J_{i}=(1, i)+\cdots+\left(i-1, i^{\bar{\xi}}\right)+\left(i, i^{\tilde{\Sigma}}\right)+\ldots+\left(i, i^{\bar{\xi}}\right)$ are a version of the JM elements. The approach of [10, Prop. 4.8] expresses the character values on these generalized JucysMurphy elements as certain content calculations, see also [9, Section 4.2] or [15].

The change-of-basis (C) is in Theorems 3.17 and 3.18 of [8]. The final ingredient (D) comes from our previous work, joint with Chapuy, in [2, Section 9.5.2] where we prove an equality in $G(m, 1, N)$ between $\sum \chi(c) \chi$ and a virtual character that involves the exterior powers of certain N-dimensional representations that are analogues of the standard representation of S_{N}.
Remark 3.9. The genus 0 case, or equivalently $\operatorname{cyc}(\alpha)=n+1$, appears only if $\boldsymbol{v}_{\text {free }}(\pi)=$ $n+1$ (no symmetry) or $v_{\text {free }}(\pi)=n$ (π has some symmetry). In this way, Theorem 3.8 recovers the known symmetry count in the form of a CSP [11, §7] in the genus-0 case (there the matchings must be non-crossing and determine a (different) noncrossing partition of the odd vertices $1,3, \ldots 2 n-1$; it is this object that is studied in [11]).

Remark 3.10. The approach described above can give a complete version of Zagier's main theorem from [14] (i.e. for any conjugacy class of $G(m, 1, N)$ not just the fixed point free involutions).

Remark 3.11. The approach of this section can be generalized to other factorization counting questions, where conjugation by the long cycle is a natural symmetry. For instance, in works of Goupil-Schaeffer [4] and Bernardi-Morales [1], one could try to count symmetric factorizations by transfering the question to some $G(m, 1, n)$ group. Factorizations of the Coxeter element $c \in G(m, 1, n)$ have been extensively studied by LewisMorales, where the authors also observe [7, §8.2] in their setting that the $G(m, 1, n)$ factorizations cannot keep track of the topological genus of a corresponding map.

4 Counting symmetric maps keeping track of genus

The main disadvantage of Theorem 3.8 is that the enumeration cannot keep track of the topological genus of the map π. We discuss in this section a partial attempt to resolve this. We define a new length function in $G(m, 1, N)$ given as

$$
\ell_{s p}(w):=\ell_{S_{m N}}(w),
$$

that is the symmetric length of $w \in G(m, 1, N)$ is its length as an element of $S_{m N}$. Notice that this is a class function since if two elements are conjugate in $G(m, 1, N)$ then they are also conjugate in $S_{m N}$ hence have the same length.

Then, a generalization of (1.1) in the spirit of Theorem 3.8 but using $\ell_{s p}(w)$ instead of $\ell_{G(m, 1, N)}(w)$ would rely on understanding

$$
\sum_{\chi \in G \widehat{(m, 1, N)}} \chi\left(\sigma_{k}\right) \chi(c) \cdot \sum_{w \in G(m, 1, N)} \frac{\chi(w)}{\chi(1)} X^{\ell_{s p}(w)}
$$

where σ_{k} is any involution with $d_{m}\left(\sigma_{k}\right)=k$.
It is not difficult to see that there is a factorization

$$
\begin{aligned}
\sum_{w \in G(m, 1, N)} w X^{\ell_{s p}(w)}= & {\left[\mathbf{1}+X^{m-1}\left(11^{\xi}\right)+\ldots+X^{m-1}\left(11^{\bar{\xi}}\right)\right] \times } \\
& \times\left[\mathbf{1}+X^{m}(12)+\ldots+X^{m}\left(12^{\xi}\right)+\ldots+X^{m-1}\left(22^{\bar{\xi}}\right)\right] \ldots
\end{aligned}
$$

where each reflection τ contributes the term $X^{\ell s p}(\tau)$.
This factorization might be seen as an analogue of (B1) and we can certainly calculate the corresponding traces for irreducible characters (either manually or by the techniques of [13, Lemma 3.7], or even by following Jucys original argument [5, Section 4] and
relying on existing determinations of the eigenvalues of these generalized Jucys-Murphy elements on eigenvectors indexed by tuples of Young tableau as for instance [10]).

However, we have no analogue of ($B 2$): Even though Sage experiments suggest that we always have nice formulas for $\sum_{w \in G(m, 1, N)} \widetilde{\chi}(w) X^{\ell_{s p}}(w)$, it is not clear that there exists a change of basis analogous to (C) (or even that one might exist: we need to transform more than n polynomials; the corresponding polynomials with $X^{\ell}{ }_{G(m, 1, N)}$ depend only on the Coxeter number of χ when $\chi(c) \neq 0$ but with $\ell_{s p}$ this is no longer true.

Acknowledgements

I would like to thank Vic Reiner who, back in 2014 when teaching a topics course on [6], had asked for a cyclic sieving phenomenon on unicellular maps of a fixed genus, generalizing the q-Catalan numbers. I would also like to thank Guillaume Chapuy for some very helpful earlier advice on this problem.

References

[1] O. Bernardi and A. H. Morales. "Bijections and symmetries for the factorizations of the long cycle". Adv. in Appl. Math. 50.5 (2013), pp. 702-722. Doi.
[2] G. Chapuy and T. Douvropoulos. "Coxeter factorizations with generalized Jucys-Murphy weights and matrix-tree theorems for reflection groups". Proc. Lond. Math. Soc. (3) 126.1 (2023), pp. 129-191.
[3] P. Galashin, T. Lam, M.-T. Q. Trinh, and N. Williams. "Rational Noncrossing CoxeterCatalan Combinatorics". 2022. arXiv:2208.00121.
[4] A. Goupil and G. Schaeffer. "Factoring n-cycles and counting maps of given genus". European J. Combin. 19.7 (1998), pp. 819-834. DoI.
[5] A.-A. A. Jucys. "Symmetric polynomials and the center of the symmetric group ring". Rep. Mathematical Phys. 5.1 (1974), pp. 107-112. Dor.
[6] S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications. Vol. 141. Encyclopaedia of Mathematical Sciences. With an appendix by Don B. Zagier, Low-Dimensional Topology, II. Springer-Verlag, Berlin, 2004, pp. xvi+455. Doi.
[7] J. B. Lewis and A. H. Morales. "Factorization problems in complex reflection groups". Canad. J. Math. 73.4 (2021), pp. 899-946. DoI.
[8] A. R. Miller. "On Foulkes characters". Math. Ann. 381.3-4 (2021), pp. 1589-1614. Dor.
[9] O. V. Ogievetsky and L. Poulain d'Andecy. "Fusion procedure for Coxeter groups of type B and complex reflection groups $G(m, 1, n)$ ". Proc. Amer. Math. Soc. 142.9 (2014), pp. 29292941. Doi.
[10] A. Ram. "Seminormal representations of Weyl groups and Iwahori-Hecke algebras". Proc. London Math. Soc. (3) 75.1 (1997), pp. 99-133. Doi.
[11] V. Reiner, D. Stanton, and D. White. "The cyclic sieving phenomenon". J. Combin. Theory Ser. A 108.1 (2004), pp. 17-50. Dor.
[12] E. Steingrímsson. "Permutation statistics of indexed permutations". European J. Combin. 15.2 (1994), pp. 187-205. Doi.
[13] W. Wang. "Vertex algebras and the class algebras of wreath products". Proc. London Math. Soc. (3) 88.2 (2004), pp. 381-404. Doi.
[14] D. Zagier. "On the distribution of the number of cycles of elements in symmetric groups". Nieuw Arch. Wisk. (4) 13.3 (1995), pp. 489-495.
[15] P. Zinn-Justin. "Jucys-Murphy elements and Weingarten matrices". Lett. Math. Phys. 91.2 (2010), pp. 119-127. Doi.

[^0]: *tdouvropoulos@brandeis.edu

[^1]: ${ }^{1}$ Note that the reflections of $G(m, 1, N)$ do not come from transpositions of $S_{2 n}$; they come from some elements of type $\left(2^{m}, 1^{2 n-2 m}\right)$ (the transposition-like ones) and some other ones -multiple cycle types- for the diagonal-like reflections; see Example 3.3 and Remark 3.4.

