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Abstract. Let G be a connected graph. The Jacobian group (also known as the Picard
group or sandpile group) of G is a finite abelian group whose cardinality equals the
number of spanning trees of G. The Jacobian group admits a canonical simply transi-
tive action on the set R(G) of cycle-cocycle reversal classes of orientations of G. Hence
one can construct combinatorial bijections between spanning trees of G and R(G) to
build connections between spanning trees and the Jacobian group. The geometric bi-
jections (defined by Backman, Baker, and Yuen) and the Bernardi bijections are two
important examples. In this paper, we construct a new family of such bijections that
includes both. Our bijections depend on a pair of atlases (different from the ones
in manifold theory) that abstract and generalize certain common features of the two
known bijections. The definitions of these atlases are derived from triangulations and
dissections of the Lawrence polytopes associated to G. The acyclic cycle signatures
and cocycle signatures used to define the geometric bijections correspond to regular
triangulations. Our bijections can extend to subgraph-orientation correspondences.
Most of our results hold for regular matroids. We present our work in the language of
fourientations, which are a generalization of orientations.

Keywords: sandpile group, cycle-cocycle reversal class, Lawrence polytope, triangula-
tion, dissection, fourientation

1 Overview

This paper is an extended abstract of our recent work [8] to be submitted to the con-
ference FPSAC 2024. Most of this paper comes from [8, Section 1]. The major change
we have made is that this paper is written in the setting of graphs rather than regular
matroids. We hope this will benefit some readers who are not familiar with matroids.

Given a connected graph G, we build a new family of bijections between the set T (G)
of spanning trees of G and the set R(G) of equivalence classes of orientations of G up to
cycle and cocycle reversals. The new family of bijections includes the BBY bijection (also
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known as the geometric bijection) constructed by Backman, Baker, and Yuen [2], and the
Bernardi bijection1 in [6].

These bijections are closely related to the Jacobian group (also known as the Picard
group or sandpile group) Jac(G) of G. The group Jac(G) and the set T (G) of spanning
trees are equinumerous. Recently, many efforts have been devoted to making T (G)
a torsor for Jac(G), i.e., defining a simply transitive action of Jac(G) on T (G). In [4],
Baker and Wang interpreted the Bernardi bijection as a bijection between T (G) and
break divisors. Since the set of break divisors is a canonical torsor for Jac(G) (see [1]),
the Bernardi bijection induces the Bernardi torsor. In [14], Yuen defined the geometric
bijection between T (G) and break divisors of G. Later, this work was generalized in
[2] where Backman, Baker, and Yuen defined the BBY bijection between T (G) and the
cycle-cocycle reversal classes R(G). The set R(G) was introduced by Gioan [10] and is
known to be a canonical torsor for Jac(G) [2]. Hence any bijection between T (G) and
R(G) makes T (G) a torsor. From the point of view in [2], replacing break divisors with
R(G) provides a more general setting. In particular, we may also view the Bernardi
bijection as a bijection between T (G) and R(G) and define the Bernardi torsor.

Our work puts all the above bijections in the same framework. It is surprising because
the BBY bijection and the Bernardi bijection rely on totally different parameters. The
main ingredients to define the BBY bijection are an acyclic cycle signature σ and an acyclic
cocycle signature σ∗ of G. The BBY bijection sends spanning trees to (σ, σ∗)-compatible
orientations, which are representatives of R(G). The Bernardi bijection relies on a ribbon
structure on the graph G together with a vertex and an edge as initial data. Although
for planar graphs, the Bernardi bijection becomes a special case of the BBY bijection,
they are different in general [14, 2]. The main ingredients to define our new bijections
are a triangulating atlas and a dissecting atlas of G. These atlases (different from the ones
in manifold theory) abstract and generalize certain common features of the two known
bijections. They are derived from triangulations and dissections of the Lawrence polytopes
associated to graphs. The acyclic cycle signatures and cocycle signatures used to define
the BBY bijections correspond to regular triangulations.

Our bijections extend to subgraph-orientation correspondences. The construction is
similar to the one that extends the BBY bijection in [9]. The extended bijections have nice
specializations to forests and connected subgraphs.

Our results are also closely related to and motivated by Kálmán’s work [11], Kálmán
and Tóthmérész’s work [12], and Postnikov’s work [13] on root polytopes of hypergraphs,
where the hypergraphs specialize to graphs, and the Lawrence polytopes generalize the
root polytopes in the case of graphs. See [8, Section 1.8] for details.

We find it very efficient to present our theory in the language of fourientations, which
are a generalization of orientations introduced by Backman and Hopkins [3].

1The Bernardi bijection in [6] is a subgraph-orientation correspondence. In this paper, by the Bernardi
bijection we always mean its restriction to spanning trees.
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Most of our results hold for regular matroids as in [2], although in this paper we focus
on graphs. See [8] for the regular matroid version of this paper.

2 Notation and terminology

2.1 Cycles and cocycles of a graph

Let G be a connected finite graph with nonempty edge set E, where loops and multiple
edges are allowed. For each edge e ∈ E, we may assign a direction to it and hence get an
arc. Note that a loop also has two possible directions. An orientation of the graph G is an
assignment of a direction to each edge, typically denoted by

−→
O .

A subset C of E is called a cycle if there exist distinct vertices v1, v2, · · · , vn such that
C = {edge vivi+1 : i = 1, 2, · · · , n}, where vn+1 := v1. Note that a cycle may be a loop.
If we direct every edge in C from vi to vi+1 or direct every edge in C from vi+1 to vi,
then we get a directed cycle, typically denoted by

−→
C . Given a subset W of vertices, the

set of edges with one endpoint in W and the other one not in W is called a cut. A cocycle
C∗ is a cut which is minimal for inclusion. If we direct every edge in C∗ from W to its
complement (or in the other way), then we get a directed cocycle, typically denoted by

−→
C∗.

When an arc −→e , a directed cycle
−→
C , or a directed cocycle

−→
C∗ is specified, the corre-

sponding underlying edge(s) will be denoted by e, C, or C∗, respectively. Viewing
−→
O ,

−→
C , and

−→
C∗ as sets of arcs, it makes sense to write −→e ∈ −→

O , etc.
Now we define cycle-cocycle reversal (equivalence) classes of orientations of G introduced

by Gioan [10]. If
−→
C is a directed cycle in an orientation

−→
O of G, then a cycle reversal

replaces
−→
C with the opposite directed cycle in

−→
O . The equivalence relation generated

by cycle reversals defines the cycle reversal classes of orientations of G. Similarly, we may
define the cocycle reversal classes. The equivalence relation generated by cycle and cocycle
reversals defines the cycle-cocycle reversal classes. It is proved in [10] that the number of
cycle-cocycle reversal classes of G equals the number of spanning trees of G.

Let T be a spanning tree of G and e be an edge. If e /∈ T, then we call the unique cycle
in T ∪ {e} the fundamental cycle of e (with respect to T); if e ∈ T, then we call the unique
cocycle in (E\T) ∪ {e} the fundamental cocycle of e (with respect to T).

2.2 Fourientations, potential cycles, and potential cocycles

It is convenient to introduce our theory in terms of fourientations. Fourientations of
graphs are systematically studied by Backman and Hopkins [3]. We will only make use
of the basic notions. A fourientation

−→
F of the graph G is a subset of the set of all the 2|E|

arcs. Intuitively, a fourientation is a choice for each edge of G whether to make it one-way
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oriented, leave it unoriented, or biorient it. We denote by −−→
F the fourientation obtained

by reversing all the arcs in
−→
F . In particular, the bioriented edges remain bioriented. We

denote by
−→
F c the set complement of

−→
F , which is also a fourientation. A potential cycle

of a fourientation
−→
F is a directed cycle

−→
C such that

−→
C ⊆ −→

F . A potential cocycle of a
fourientation

−→
F is a directed cocycle

−→
C∗ such that

−→
C∗ ⊆ −−→

F c. See Figure 1 for examples.

−→
F −

−→
F

c

−
−→
F

−→
F

c −→
F

−→
C

−→
C

∗

Figure 1: Examples of fourientation, potential cycle and potential cocycle

3 New framework: a pair of atlases and its induced map

The BBY bijection studied in [2] relies upon a pair consisting of an acyclic cycle signa-
ture and an acyclic cocycle signature. We will generalize this work by building a new
framework where the signatures are replaced by atlases and the BBY bijection is replaced
by a map fA,A∗ . This section will introduce these new terminologies.

Definition 3.1. Let T be a tree of G (from now on, by trees we mean spanning trees).
(1) We call the edges in T internal and the edges not in T external.
(2) An externally oriented tree

−→
T is a fourientation where all the internal edges are

bioriented and all the external edges are one-way oriented. Dually, an internally oriented
tree

−→
T∗ is a fourientation where all the external edges are bioriented and all the internal

edges are one-way oriented.
(3) An external atlas A of G is a collection of externally oriented trees

−→
T such that

each tree of G appears exactly once. Dually, an internal atlas A∗ of G is a collection of
internally oriented trees

−→
T∗ such that each tree of G appears exactly once.

Given an external atlas A (resp. internal atlas A∗) and a tree T, by
−→
T (resp.

−→
T∗) we

always mean the oriented tree in the atlas though the notation does not refer to the atlas.

Definition 3.2 (See Figure 2). For a pair of atlases (A,A∗), we define the following map

fA,A∗ : {trees of G} → {orientations of G}

T 7→ −→
T ∩

−→
T∗ (where

−→
T ∈ A,

−→
T∗ ∈ A∗).

We remark that, in the other direction, for any map f from trees to orientations, there
exists a unique pair of atlases (A,A∗) such that f = fA,A∗ . So, the pair of atlases merely
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An external atlas A

An internal atlas A∗

The map fA,A∗

�→means( )

⋂

‖

⋂

‖

⋂

‖

In the last row,

Figure 2: An example for Definition 3.1 and 3.2. The trees of the triangle graph are in
red.

lets us view the map f from a different perspective. However, from the main results of
this paper, one will see why this new perspective interests us.

In the forthcoming Example 3.4 and Example 3.5, we will put the BBY bijection and
the Bernardi bijection in our framework. Before that, we recall the definitions of cycle
(resp. cocycle) signatures and acyclic cycle (resp. cocycle) signatures in [2].

Definition 3.3. Let G be a graph.
(1) A cycle signature σ of G is the choice of a direction for each cycle of G. For each

cycle C, we denote by σ(C) the directed cycle we choose for C. By abuse of notation,
sometimes we also view σ as the set of the directed cycles of G chosen by σ.

(2) The cycle signature σ is said to be acyclic if whenever aC are nonnegative reals
with ∑C aCσ(C) = 0 in RE we have aC = 0 for all C, where the sum is over all cycles of
G, and σ(C) is viewed as a {0,±1}-vector in RE w.r.t. a fixed reference orientation.

(3) Cocycle signatures σ∗ and acyclic cocycle signatures are defined similarly.

Example 3.4 (Atlases Aσ,A∗
σ∗ and the BBY map (bijection)). Let σ be a cycle signature of

G. We may construct an external atlas Aσ from σ such that for each externally oriented
tree

−→
T ∈ Aσ, each external arc −→e ∈ −→

T is oriented according to the orientation of the
fundamental cycle of e determined by σ. Similarly, we may construct an internal atlas
A∗

σ∗ from any cocycle signature σ∗ such that for each internally oriented tree
−→
T∗ ∈ A∗

σ∗ ,
each internal arc −→e ∈

−→
T∗ is oriented according to the orientation of the fundamental

cocycle of e determined by σ∗. Then when the two signatures are acyclic, the map
fAσ,A∗

σ∗
is exactly the BBY map defined in [2].

Example 3.5 (Atlases AB,A∗
q and the Bernardi map (bijection)). The Bernardi bijection is

defined for a connected graph G equipped with a ribbon structure and with initial data
(q, e), where q is a vertex and e is an edge incident to the vertex; see [6] for details or see
[4] for a nice introduction. Here we use an example (Figure 3) to recall the construction
of the bijection in the atlas language. The Bernardi bijection is a map from trees to
certain orientations. The construction makes use of the Bernardi tour which starts with
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(q, e) and goes around a given tree T according to the ribbon structure. We may construct
an external atlas AB of G as follows. Observe that the Bernardi tour cuts each external
edge twice. We orient each external edge toward the first-cut endpoint, biorient all the
internal edges of T, and hence get an externally oriented tree

−→
T . All such externally

oriented trees form the atlas AB.
The internal atlas A∗

q of G is constructed as follows. For any tree T, we orient each

internal edge away from q, biorient external edges, and hence get
−→
T∗ ∈ A∗

q . We remark
that A∗

q is a special case of A∗
σ∗ , where σ∗ is an acyclic cocycle signature [2, Example

1.3.4].
The map fAB,A∗

q is exactly the Bernardi map.

q

e

q

e

tree T and Bernardi tour

v

e

q

−→
T

−→
T ∗

−→
T ∩

−→
T ∗

Figure 3: An example for the Bernardi map. The tree T is in red.

4 Bijections and the two atlases

We will see in this section that the map fA,A∗ induces a bijection between trees of G and
cycle-cocycle reversal classes of G when the two atlases satisfy certain conditions which
we call dissecting and triangulating. Furthermore, we will extend the bijection as in [9].

The following definitions play a central role in our paper. Although the definitions
are combinatorial, they were derived from dissecting and triangulating Lawrence poly-
topes; see Section 6.

Definition 4.1. Let A be an external atlas and A∗ be an internal atlas of G.
(1) We call A dissecting if for any two distinct trees T1 and T2, the fourientation

−→
T1 ∩ (−−→

T2) has a potential cocycle. Dually, we call A∗ dissecting if for any two distinct
trees T1 and T2, the fourientation (

−→
T∗

1 ∩ (−
−→
T∗

2 ))
c has a potential cycle.

(2) We call A triangulating if for any two distinct trees T1 and T2, the fourientation
−→
T1 ∩ (−−→

T2) has no potential cycle. Dually, we call A∗ triangulating if for any two distinct
trees T1 and T2, the fourientation (

−→
T∗

1 ∩ (−
−→
T∗

2 ))
c has no potential cocycle.

Remark 4.2. Being triangulating is stronger than being dissecting by [3, Proposition 2.6].

Now we are ready to present the first main result in this paper.
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Theorem 4.3. Given a pair of dissecting atlases (A,A∗) of a graph G, if at least one of
the atlases is triangulating, then the map

fA,A∗ : {trees of G} → {cycle-cocycle reversal classes of G}

T 7→ [
−→
T ∩

−→
T∗]

is bijective, where [
−→
T ∩

−→
T∗] denotes the cycle-cocycle reversal class containing

−→
T ∩

−→
T∗.

Example 4.4 (Example 3.4 continued). One of the main results in [2] is that the BBY map
induces a bijection between trees and cycle-cocycle reversal classes. Because Aσ and A∗

σ∗

are triangulating ([8, Lemma 3.4]), Theorem 4.3 recovers this result.

Example 4.5 (Example 3.5 continued). Theorem 4.3 also recovers the bijectivity of the
Bernardi map for trees in [6]. In [6], it is proved that the Bernardi map is a bijection
between trees and the q-connected outdegree sequences. Baker and Wang [4] observed that
the q-connected outdegree sequences are essentially the same as the break divisors. Later
in [2], the break divisors are equivalently replaced by cycle-cocycle reversal classes. The
external atlas AB is dissecting ([8, Lemma 3.15]). The internal atlas A∗

q is triangulating
because it equals A∗

σ∗ for some acyclic signature σ∗. Hence our theorem applies.

In Theorem 4.3, if we do not further assume that one of the atlases is triangulating,
then the map fA,A∗ is not necessarily bijective; see [8, Example 1.11].

In [9], the BBY bijection is extended to a bijection φ between spanning subgraphs of
G (i.e., subsets of E) and orientations of G in a canonical way. We also generalize this
work by extending fA,A∗ to φA,A∗ .

Definition 4.6 (The map φA,A∗). We will define a map φA,A∗ from orientations to sub-
graphs such that φA,A∗ ◦ fA,A∗ is the identity map, and hence φA,A∗ extends f−1

A,A∗ . We

start with an orientation
−→
O . By Theorem 4.3, we get a tree T = f

−1
A,A∗([

−→
O ]). Since

−→
O

and fA,A∗(T) are in the same cycle-cocycle reversal class, one can obtain one of them by
reversing disjoint directed cycles {−→Ci }i∈I and cocycles {

−→
C∗

j }j∈J in the other ([8, Lemma

2.7]). Define φA,A∗(
−→
O ) = (T ∪ ⊎

i∈I
Ci)\

⊎
j∈J

C∗
j .

The amazing fact here is that φA,A∗ is a bijection, and it has nice specializations.

Theorem 4.7. Fix a pair of dissecting atlases (A,A∗) of G with ground set E. Suppose
at least one of the atlases is triangulating.

(1) The map φA,A∗ is a bijection from orientations of G to spanning subgraphs of G.
(2) The image of the spanning forests of G under the bijection φ−1

A,A∗ is a representative
set of the cycle reversal classes of G.

(3) The image of the spanning connected subgraphs of G under the bijection φ−1
A,A∗ is

a representative set of the cocycle reversal classes of G.

Remark 4.8. We can apply Theorem 4.7 to extend and generalize the Bernardi bijection;
see [8, Corollary 3.16] for a formal statement.
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5 Signatures and the two atlases

This section studies cycle signatures (resp. cocycle signatures) in terms of external atlases
(resp. internal atlases). In particular, we will see Theorem 4.3 and Theorem 4.7 generalize
the bijections in [2] and [9], respectively.

Recall in Example 3.4 that from signatures σ and σ∗, we may construct atlases Aσ

and A∗
σ∗ . It is natural to ask: (1) Which signatures induce triangulating atlases? (2) Is

any triangulating atlas induced by a signature?
The following definition and theorem answer these two questions.

Definition 5.1. A cycle signature σ is said to be triangulating if for any
−→
T ∈ Aσ and

any directed cycle
−→
C ⊆ −→

T ,
−→
C belongs to σ. Dually, a cocycle signature σ∗ is said to be

triangulating if for any
−→
T∗ ∈ A∗

σ∗ and any directed cocycle
−→
C∗ ⊆

−→
T∗,

−→
C∗ belongs to σ∗.

Theorem 5.2. The map α : σ 7→ Aσ is a bijection from the set of triangulating cycle
signatures of G to the set of triangulating external atlases of G. Dually, the map α∗ :
σ∗ 7→ A∗

σ∗ is a bijection from the set of triangulating cocycle signatures of G to the set of
triangulating internal atlases of G.

Remark 5.3. For a dissecting external atlas A, it is possible for there to be no cycle
signature σ such that Aσ = A; see [8, Remark 1.18].

Remark 5.4. Acyclic signatures are all triangulating; see [8, Lemma 3.4]. There exists a
triangulating signature that is not acyclic; see [8, Proposition 3.14]. In Section 6, we will
see acyclic signatures correspond to regular triangulations.

A nice thing about the acyclic signatures is that the associated compatible orienta-
tions (defined below) form representatives of orientation classes (proved in [2]). The
triangulating signatures also have this property; see the proposition below.

Definition 5.5. Let G be a graph, σ be a cycle signature, σ∗ be a cocycle signature, and
−→
O be an orientation of G.

(1) The orientation
−→
O is said to be σ-compatible if any directed cycle in

−→
O is in σ.

(2) The orientation
−→
O is said to be σ∗-compatible if any directed cocycle in

−→
O is in σ∗.

(3) The orientation
−→
O is said to be (σ, σ∗)-compatible if it is both σ-compatible and

σ∗-compatible.

Proposition 5.6. Suppose σ and σ∗ are triangulating signatures.
(1) The set of (σ, σ∗)-compatible orientations is a representative set of the cycle-

cocycle reversal classes of G.
(2) The set of σ-compatible orientations (resp. σ∗-compatible orientations) is a repre-

sentative set of the cycle (resp. cocycle) reversal classes of G.
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To reformulate Theorem 4.3 and Theorem 4.7 in terms of signatures and compatible
orientations, we write

BBYσ,σ∗ = fAσ,A∗
σ∗

and φσ,σ∗ = φAσ,A∗
σ∗

.

They are exactly the BBY bijection in [2] and the extended BBY bijection in [9] when the
two signatures are acyclic. By the two theorems and a little extra work, we have the
following theorems, which generalize the work in [2] and [9], respectively.

Theorem 5.7. Suppose σ and σ∗ are triangulating signatures of a graph G. The map
BBYσ,σ∗ is a bijection from trees of G to (σ, σ∗)-compatible orientations of G.

Theorem 5.8. Suppose σ and σ∗ are triangulating signatures of a graph G.
(1) The map φσ,σ∗ is a bijection from orientations of G to spanning subgraphs of G.
(2) The map φσ,σ∗ specializes to a bijection between σ-compatible orientations and

spanning forests of G.
(3)The map φσ,σ∗ specializes to a bijection between σ∗-compatible orientations and

spanning connected subgraphs of G.

The definition of triangulating signatures is somewhat indirect. However, we have
the following nice description for the triangulating cycle signatures, the proof of which
is due to Gleb Nenashev. We do not know whether it holds for regular matroids.

Theorem 5.9. A cycle signature σ of a graph G is triangulating if and only if for any three
directed cycles in σ, their sum (as vectors in ZE) is not zero.

6 Lawrence polytopes and the two atlases

In this section, we will introduce a pair of Lawrence polytopes2 P and P∗ associated to a
graph G. We will see that dissections and triangulations of the Lawrence polytopes cor-
respond to the dissecting atlases and triangulating atlases, respectively, which is actually
how we derived Definition 4.1. We will also see that regular triangulations correspond
to acyclic signatures.

By fixing a reference orientation of G, we get an oriented incidence matrix of G. The
matrix is not of full rank. By deleting its last row, we get a matrix Mr×n, where n equals
the number of edges of G and r equals the number of edges of any tree of G. We can also
construct another matrix M∗

(n−r)×n viewed as the dual of M. The construction is classic;
see [9, Section 3.6]. For the readers who are familiar with matroids, we can simply say
that M (resp. M∗) represents the graphic (resp. cographic) matroid associated to G.

2Readers can find some information on Lawrence polytopes in [5].
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Definition 6.1. (1) We call (
Mr×n 0
In×n In×n

)
the Lawrence matrix, where In×n is the identity matrix. The columns of the Lawrence
matrix are denoted by P1, · · · , Pn, P−1, · · · , P−n ∈ Rn+r in order.

(2) The Lawrence polytope P ⊆ Rn+r of G is the convex hull of the points P1, · · · , Pn,
P−1, · · · , P−n.

(3) If we replace the matrix M in (1) with M∗ , then we get the Lawrence polytope
P∗ ⊆ R2n−r. We use the labels P∗

i for the points generating P∗.
(4) We further assume that G is loopless when defining P and that G is coloopless

when defining P∗, to avoid duplicate columns of the Lawrence matrix.

We recall some basic notions in discrete geometry.

Definition 6.2. A simplex S is the convex hull of some affinely independent points. A
face of S is a simplex generated by a subset of these points, which could be S or ∅.

Definition 6.3. Let P be a polytope of dimension d.
(1) If d + 1 of the vertices of P form a d-dimensional simplex, we call such a simplex

a maximal simplex of P .
(2) A dissection of P is a collection of maximal simplices of P such that (I) the union

is P , and (II) the relative interiors of any two distinct maximal simplices in the collection
are disjoint.

(3) If we replace the condition (II) in (2) with the condition (III) that any two distinct
maximal simplices in the collection intersect in a common face (which could be empty),
then we get a triangulation. (See Figure 4.)

triangulation dissection

Figure 4: A triangulation and a dissection of an octahedron

The next two theorems build the connection between the geometry of the Lawrence
polytopes and the combinatorics of the graph. To state them, we need to label the 2|E|
arcs of G. Note that each column of M corresponds to the arcs of G in the reference
orientation. We denote them by −→e1 , · · · ,−→en . For the rest of the arcs, we let −→e−i = −−→ei .
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Theorem 6.4. We have the following threefold bijections, all of which are denoted by χ.
(It should be clear from the context which one we are referring to when we use χ. )

(1) The Lawrence polytope P ⊆ Rn+r is an (n + r − 1)-dimensional polytope whose
vertices are exactly the points P1, · · · , Pn, P−1, · · · , P−n. Hence we may define a bijection

χ : {vertices of P} → {arcs of G}
Pi 7→ −→ei

(2) The map χ in (1) induces a bijection

χ : {maximal simplices of P} → {externally oriented trees of G}
a maximal simplex

with vertices {Pi : i ∈ I}
7→ the fourientation {χ(Pi) : i ∈ I}.

(3) The map χ in (2) induces two bijections

χ : {triangulations of P} → {triangulating external atlases of G}
a triangulation with

maximal simplices {Sj : j ∈ J}
7→ the external atlas {χ(Sj) : i ∈ J},

and

χ : {dissections of P} → {dissecting external atlases of G}
a dissection with

maximal simplices {Sj : j ∈ J}
7→ the external atlas {χ(Sj) : j ∈ J}.

(4) The statements dual to (1), (2), and (3) hold for the Lawrence polytope P∗.

Recall that the map α : σ 7→ Aσ is a bijection between triangulating cycle signatures
and triangulating external atlases of G.

Theorem 6.5. The restriction of the bijection χ−1 ◦ α to the set of acyclic cycle signatures
of G is bijective onto the set of regular triangulations of P . The dual statement also holds.
(See [7] for the definition of regular triangulations.)

We conclude this section with Table 1.

types of dissections of
Lawrence polytope P dissection triangulation regular triangulation

types of external atlas A dissecting triangulating (no good description)
types of cycle signature σ (may not exist) triangulating acyclic

Table 1: A summary of the correspondences among dissections of Lawrence polytopes,
atlases, and signatures via α and χ. We omit the dual part.
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