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Abstract. The classical Robinson–Schensted–Knuth correspondence is a bijection from
nonnegative integer matrices to pairs of semi-standard Young tableaux. Based on the
work of, among others, Burge, Hillman, Grassl, Knuth and Gansner, it is known that
a version of this correspondence gives, for any nonzero integer partition λ, a bijection
from arbitrary fillings of λ to reverse plane partitions of shape λ, via Greene–Kleitman
invariants. By bringing out the combinatorial aspects of our recent results on quiver
representations, we construct a family of bijections from fillings of λ to reverse plane
partitions of shape λ parametrized by a choice of Coxeter element in a suitable sym-
metric group. We recover the above version of the Robinson–Schensted–Knuth corre-
spondence for a particular choice of Coxeter element depending on λ.

Résumé. La correspondance Robinson–Schensted–Knuth classique est une bijection
partant des matrices à coefficients des entiers naturels vers les paires de tableaux de
Young semi-standards. Basé sur les travaux, entre autres, de Burge, Hillman, Grassl,
Knuth et Gansner, on sait qu’une version de cette correspondance donne, pour toute
partage d’un entier non nulle λ, une bijection allant des remplissages arbitraires de λ

vers les partitions planes renversées de forme λ, via les invariants de Greene–Kleitman.
En faisant ressortir les aspects combinatoires de nos récents résultats sur les représen-
tations de carquois, nous construisons une famille de bijections partant des remplis-
sages de λ vers les partitions planes renversées de forme λ, paramétrées par un choix
d’élément de Coxeter dans un groupe symétrique approprié. Nous récupérons la ver-
sion de la correspondance Robinson–Schensted–Knuth ci-dessus pour un choix partic-
ulier d’élément de Coxeter dépendant de λ.

Keywords: Quiver representations, Robinson–Schensted–Knuth, Reverse plane parti-
tions.

1 Introduction

The Robinson–Schensted–Knuth (RSK) correspondence is a fundamental bijection from
nonnegative integer matrices to pairs of semi-standard Young tableaux of the same
shape. For further details, the reader may consult the following references: [15], [5].
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Based on observations of various works of Burge [3], Hillman–Grassl [11] and Knuth
[12], Gansner [6, 8] constructed a generalized version of this correspondence, via Greene–
Kleitman invariants, which gives a bijection from arbitrary fillings to reverse plane par-
titions of the same shape.

Our paper [4] studies a representation-theoretic setting in which a version of RSK
exists. In the present paper, we present an explicit, combinatorial form of the results from
[4]. Given a fixed nonzero integer partition λ, we present the construction of a family
of maps (RSKλ,c)c from fillings of λ to reverse plane partitions of shape λ parametrized
by c a Coxeter element of the symmetric group Sn where n − 1 is the hook-length of the
box (1, 1) in λ. We can state the following result from [4].

Theorem 1. The map RSKλ,c gives a one-to-one correspondence from fillings of shape λ to reverse
plane partitions of shape λ. Moreover, for any λ, there exists a unique (up to inverse) choice of c
such that RSKλ,c coincides with the usual RSK.

No knowledge in quiver representation is required to read this abstract, except for
Section 5 in which we discuss the connection with quiver representations.

2 Gansner’s Ferrers Diagram RSK

In this section, we describe Gansner’s correspondence explicitly.

2.1 Some vocabulary

An integer partition is a weakly decreasing nonnegative integer sequence λ = (λn)n∈N∗

with finitely many nonzero terms. The length of λ is the minimal k ∈ N such that
λk+1 = 0. We endow (N∗)2 with the Cartesian product order ⊴. The Ferrers diagram of
λ Fer(λ) is the subset of (N∗)2 given by pairs (i, j) such that i ⩽ λj. We call any map
f : Fer(λ) −→ N a filling of shape λ . Such a filling f is a reverse plane partition whenever
f weakly increases with respect to ⊴. We give an example of a reverse plane partition of
shape (5, 3, 3, 2) in Figure 1.

0 3 5 5 7
1 5 5
4 6 9
4 10

Figure 1: A reverse plane partitions of shape λ = (5, 3, 3, 2).
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2.2 Greene–Kleitman invariants

Let G = (G0, G1) be a finite directed graph, where G0 is the set of vertices of G, and
G1 ⊂ (G0)

2 is the set of arrows of G. Assume that G has no multi-arrows.
We see a path γ in G as a finite sequence of vertices (v0, . . . , vk) such that (vi, vi+1) ∈

G1. Denote by s(γ) = v0 its source and by t(γ) = vk its target. Write Supp(γ) =
{v0, . . . , vk} to denote the support of γ. For ℓ ⩾ 1, we extend the notion of support to
ℓ-tuples of paths γ = (γ1, . . . , γℓ) as Supp(γ) =

⋃ℓ
i=1 Supp(γi). For ℓ ⩾ 1, write Πℓ(G)

the set of ℓ-tuples of paths in G.
From now on, assume that G is acyclic, meaning there is no nontrivial path γ in G

such that s(γ) = t(γ). An antichain of G is any subset of vertices {w1, . . . , wr} ⊂ G0 such
that there is no path γ in G with s(γ) = wi and t(γ) = wj for all 1 ⩽ i, j ⩽ r with i ̸= j.

A filling of G is a map f : G0 −→ N. We assign to any ℓ-tuple of paths γ of G a
f -weight defined by

wt f (γ) = ∑
v∈Supp(γ)

f (v).

Set MG
0 ( f ) = 0, and for all integers ℓ ⩾ 1, MG

ℓ ( f ) = maxγ∈Πℓ(G) wt f (γ). We define the
Greene–Kleitman invariant of f in G as

GKG( f ) =
(

MG
ℓ ( f )− MG

ℓ−1( f )
)
ℓ⩾1

.

See Figure 2 for an explicit computation example.

Proposition 2 (Greene–Kleitman [10]). Let G be a finite direct acyclic graph and f be a filling
of G. The integer sequence GKG( f ) is an integer partition of length the maximal cardinality of
an antichain in G.

2.3 Ferrers diagram RSK

Throughout this section, we highlight Gansner’s generalized version of the RSK corre-
spondence, which gives, for any nonzero integer partition λ, a bijection from fillings of
shape λ to reverse plane partitions of shape λ.

Fix a nonzero integer partition λ. Let Gλ be the oriented acyclic graph such that:

• its vertices are the elements of Fer(λ);

• its arrows are given by:

• (i, j) −→ (i + 1, j) whenever (i, j), (i + 1, j) ∈ Fer(λ);

• (i, j) −→ (i, j + 1) whenever (i, j), (i, j + 1) ∈ Fer(λ).
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GKG( f ) = (13, 5, 3, 2)

Figure 2: An example of the computation of GKG.

For all m ∈ Z, write Dm(λ) = {(i, j) ∈ Fer(λ) | i − j + λ1 = m} for the mth diagonal of
λ. Note that Dm(λ) ̸= ∅ for 1 ⩽ m ⩽ hλ(1, 1), where hλ(1, 1) = #{(i, j) ∈ Fer(λ) | i =
1 or j = 1} denotes the hook length of the box (1, 1) in λ.

For each value 1 ⩽ m ⩽ hλ(1, 1), consider (um, vm) the maximal element of Dm(λ).
Write Gλ(m) for the full subgraph of Gλ given by the poset ideal generated by (um, vm).
Note that Gλ(m) admits only one source (1, 1), and only one sink (um, vm).

We define g = RSKλ( f ) to be the filling of shape λ defined by

∀m ∈ {1, . . . , hλ(1, 1)}, ∀(i, j) ∈ Dm(λ), g(i, j) = GKGλ(m)( f )um−i+1.

See Figure 3 for an explicit calculation of RSKλ( f ) for a given filling of λ = (5, 3, 3, 2).

Theorem 3 (Gansner [8]). Let λ be a nonzero integer partition. The map RSKλ is a bijection
from fillings of shape λ to reverse plane partitions of shape λ.

Remark. If λ is a rectangle, we can recover the classical RSK. See [10] and [9, Section 6]
for more details.

Moreover, a parallel can be made with Britz and Fomin’s version of the RSK algo-
rithm [2], where we compute sequences of integer partitions for an n × n nonnegative
integer matrix as growth diagrams. A generalized version of RSK was also exploited by
Krattenthaler [13] on polyominos. From a given filling f of shape λ, the integer parti-
tions we can read on diagonals Dm(λ) of RSKλ( f ) correspond precisely to the results
obtained at the end of each line by using the Krattenthaler growth diagram algorithm
version.
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Figure 3: Explicit calculations of RSKλ( f ) for a given filling f of shape λ = (5, 3, 3, 2).
For 1 ⩽ m ⩽ 8, each framed subgraph corresponds to the subgraph Gλ(m), and each
filled diagonal colored in red corresponds to GKGλ(m)( f ).



6 Benjamin Dequêne

3 Some tools

In this section, we give the definition of some combinatorial objects that will be useful
to present our generalized version of Gansner’s RSK correspondence.

3.1 Interval bipartitions

An interval bipartition is a pair (B, E) ∈ P(N∗)2 such that {B, E} is a set partition of
{i, . . . , j} for some 1 ⩽ i ⩽ j. Call it elementary whenever 1 ∈ B and max(B ∪ E) ∈ E.

Fix (B, E) as an interval bipartition. Write B = {b1 < b2 < . . . < bp}. We define
the integer partition λ(B, E) by λ(B, E)i = #{e ∈ E | bi < e}. If we also write E =
{e1 < . . . < eq}, we can also describe λ(B, E) by its Ferrers diagram: we have (i, j) ∈
Fer(λ(B, E)) whenever bi < eq−j+1. It allows us to label the ith row of Fer(λ(B, E)) by bi
and the jth row by eq−j+1. See Figure 4 for an example of such an object.

9 7 6 5 3

1

2

4

8

Figure 4: The (labelled) integer partition λ(B, E) with B = {1, 2, 4, 8} and E =

{3, 5, 6, 7, 9}.

Proposition 4. For any integer partition λ, there exists an interval bipartition (B, E) such that
λ(B, E) = λ. Moreover, if λ is a nonzero integer partition, there exists a unique elementary
interval bipartition satisfying this property.

3.2 (Type A) Coxeter elements

For any n ⩾ 2, let Sn be the symmetric group on n letters. For 1 ⩽ i < j ⩽ n, write
(i, j) for the transposition exchanging i and j. For 1 ⩽ i < n, let si be the adjacent
transposition (i, i + 1). Let S be the set of the adjacent transpositions.

For any w ∈ Sn, an expression of w is a way to write w as a product of adjacent
transpositions in S. The length ℓ(w) of w is the minimal number of adjacent transposi-
tions in S needed to express w. Whenever, for some 1 ⩽ i < n, ℓ(siw) < ℓ(w), we say
that si is initial in w. Similarly, we call si final in w whenever ℓ(wsi) < ℓ(w).

A Coxeter element (of Sn) is an element c ∈ Sn which can be written as a product of
all the adjacent transpositions, in some order, where each of them appears exactly once.
For example, c = s2s1s3s6s5s4s8s7 = (1, 3, 4, 7, 9, 8, 6, 5, 2) is a Coxeter element of S9.
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Lemma 5. An element c ∈ Sn is a Coxeter element if and only if c is a long cycle which can be
written as follows

c = (c1, c2, . . . , cm, cm+1, . . . , cn)

where c1 = 1 < c2 < . . . < cm = n > cm+1 > . . . > cn > c1 = 1.

3.3 Auslander–Reiten quivers

Let c ∈ Sn be a Coxeter element. The Auslander–Reiten quiver of c, denoted AR(c), is the
oriented graph satisfying the following conditions:

• The vertices of AR(c) are the transpositions (i, j), with i < j, in Sn;

• The arrows of AR(c) are given, for all i < j, by

• (i, j) −→ (i, c(j)) whenever i < c(j);

• (i, j) −→ (c(i), j) whenever c(i) < j.

To construct recursively such a graph, we can first find the initial adjacent transpositions
of c, which are all the sources, and step by step, using the second rule, construct the
arrows and the vertices of AR(c) until we reach all the transpositions of Sn. Note that
the sinks of AR(c) are given by the final adjacent transpositions of c. See Figure 5 for an
explicit example.
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Figure 5: The Auslander–Reiten quiver of c = (1, 3, 4, 7, 9, 8, 6, 5, 2) = s2s1s3s6s5s4s8s7.
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Remark. The Auslander–Reiten quiver of a Coxeter element has a representation-theoretic
meaning: briefly it corresponds to the oriented graph whose vertices are the indecom-
posable representations of a certain type A quiver, and whose arrows are the irreducible
morphisms between them.

To see further details about Auslander-Reiten quivers of type A quivers in particular,
we refer the reader to [14, Section 3.1]. To learn more about quiver representation theory,
and for more in-depth knowledge on the notion of Auslander–Reiten quivers, we invite
the reader to look at [1].

4 An extended generalized Ferrers diagram RSK

In the following, we describe a generalized version of RSK using (type A) Coxeter ele-
ments, and state the main result.

Let λ be a nonzero integer partition and consider (B, E) the unique elementary in-
terval bipartition such that λ(B, E) = λ. Set n = hλ(1, 1) + 1. Let c ∈ Sn and consider
AR(c) its Auslander–Reiten quiver.

Recall that if B = {b1 < . . . < bp} and E = {e1 < . . . < eq}, then (i, j) ∈ Fer(λ) if and
only if bi < eq−j+1. It allows us to label each box (i, j) by a transposition (bi, eq−j+1) ∈ Sn.
Thus it allows us to construct a one-to-one correspondence from fillings of shape λ to
fillings of the Auslander–Reiten quiver AR(c) which are supported on vertices (b, e) ∈
B × E such that b < e. Explicitly, for any filling f of shape λ, we define f be the filling
of AR(c) defined by f (bi, eq−j+1) = f (i, j) whenever (i, j) ∈ Fer(λ) and f (x, y) = 0
otherwise.

As in Section 2, for m ∈ {1, . . . , n − 1}, let (um, vm) be the maximal pair with respect
of ⊴ in Dm(λ). The boxes in the ideal generated by (um, vm) correspond to pairs (i, j)
such that bi ⩽ m < eq−j+1, and therefore (um, vm) is the maximal pair satisfying this
condition.

For each m ∈ {1, . . . , n − 1}, we consider the subgraph ARm(c) of AR(c) where the
vertices are the transpositions (i, j) with i ⩽ m < j. This subgraph has only one source
and only one sink.

We define g = RSKλ,c( f ) to be the fillings of shape λ defined for m ∈ {1, . . . , n − 1}
by

∀(i, j) ∈ Dm(λ), g(i, j) = GKARm(c)( f )um−i+1.

See Figure 6 for an explicit example.
Our main result is the following.

Theorem 6. Let λ be a nonzero integer partition. Consider n = hλ(1, 1) + 1. Let c ∈ Sn be a
Coxeter element. The map RSKλ,c gives a one-to-one correspondence from fillings of shape λ to
reverse plane partitions of shape λ.
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Figure 6: Explicit calculation of RSKλ,c( f ) for the boxes in D5(λ) from a filling of
λ = (5, 3, 3, 2), with c = (1, 3, 4, 7, 9, 8, 6, 5, 2)

The following result shows that we extended the RSK correspondence.

Proposition 7. Let λ be a nonzero integer partition. Consider n = hλ(1, 1) + 1 and (B, E)
be the only elementary interval bipartition such that λ(B, E) = λ. Let c ∈ Sn be the Coxeter
element such that

• for i ∈ {1, . . . , n − 1}, (i, i + 1) is final in c if and only if i ∈ B and i + 1 ∈ E;

• for i ∈ {2, . . . , n − 2}, (i, i + 1) is initial in c if and only if i ∈ E and i + 1 ∈ B.

Then RSKλ,c = RSKλ. Moreover, c and c−1 are the unique Coxeter element of Sn satisfying this
property.

Remark. Gansner’s RSK for a fixed integer partition λ admits a local description in terms
of toggles on Gλ. Based on the proof given in [4], for c = (1, 2, . . . , n), we can give a local
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description in terms of toggles on AR(c). However, more works need to be done for a
general choice of c, as this local description does not extend naturally.

5 Some words about quiver representation theory

This section aims to give a dictionary to link the result from [4] with Theorem 6.
Fix Q = (Q0, Q1) a type A quiver. A finite dimensional representation E of Q over C is

an assignment of a finite dimensional C-vector space Eq to each vertex q of Q, and an
assignment of a C-linear transformation Eα : Ei −→ Ej to each arrow α : i → j of Q. For
two representations E and F, a morphism ϕ : E −→ F is the data of a C-linear map ϕq
for each vertex q of Q such that for any arrow α : i → j, ϕjEα = Fαϕi. Denote by repK(Q)
the category consisting of the representations of Q.

Any representation E of Q can be uniquely decomposed into a direct sum of copies of
indecomposable representations up to isomorphism. Thus, we can consider the invariant
which counts the number of indecomposable summands of each isomorphism class in
E. Write it Mult(E).

In [9], A. Garver, R. Patrias and H. Thomas introduce a new invariant of quiver
representations, called the generic Jordan form data. For any representation E of Q,
write GenJF(E) for the generic Jordan form data of E. This data encodes the generic
behavior of a nilpotent endomorphism N = (Nq)q∈Q0 of the representation via the size of
the Jordan blocks of each Nq. In some subcategories, the representation can be recovered
from this invariant up to isomorphism.

They also show that the map from Mult to GenJF generalizes the RSK correspondence
for type A quivers, using Gansner’s previous work [7].

As this map is bijective, if we restrict it to the representation in some subcategories C ,
one can be interested to get an explicit way to invert it. An algebraic method developed
in [9] asks the subcategory C to satisfy the following property. For any E ∈ C , there
exists a dense open set Ω (in the Zariski topology) in the set of representations admitting
a nilpotent endomorphism with Jordan forms encoded by GenJF(E) such that any F ∈ Ω
is isomorphic to E. Such a subcategory is said to be canonically Jordan recoverable (CJR).

More recently, in [4], we gave a combinatorial characterization of all the CJR subcat-
egories of representations of Q, substancially enlarging the family of subcategories for
which GenJF is a complete invariant given by [9]. The maximal such subcategories can
be described thanks to the elementary interval partitions (B, E) of {1, . . . , n + 1}.

The following table compares the representation-theoretic tools used in [4] and the
combinatorial tools used to describe our generalized RSK.
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Combinatorial tools Representation-theoretic tools
Coxeter element of Sn Orientation of an An−1 type quiver Q

Transposition in Sn Indecomposable representation in repC(Q)
AR quiver of c AR quiver of repC(Q)

Integer partition λ with hλ(1, 1) = n − 1 CJR subcategory C of repC(Q)
Filling of λ Mult(E) for some E ∈ C

Reverse plane partition of λ GenJF(E) for E in C .
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