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Abstract. Rowmotion is a certain well-studied bijective operator on the distributive
lattice J(P) of order ideals of a finite poset P. We introduce the rowmotion Markov chain
MJ(P) by assigning a probability px to each x ∈ P and using these probabilities to insert
randomness into the original definition of rowmotion. More generally, we introduce
a very broad family of toggle Markov chains inspired by Striker’s notion of generalized
toggling. We characterize when toggle Markov chains are irreducible, and we show
that each toggle Markov chain has a remarkably simple stationary distribution.

We also provide a second generalization of rowmotion Markov chains to the context of
semidistrim lattices. Given a semidistrim lattice L, we assign a probability pj to each
join-irreducible element j of L and use these probabilities to construct a rowmotion
Markov chain ML. Under the assumption that each probability pj is strictly between 0
and 1, we prove that ML is irreducible. We also compute the stationary distribution of
the rowmotion Markov chain of a lattice obtained by adding a minimal element and a
maximal element to a disjoint union of two chains.

We bound the mixing time of ML for an arbitrary semidistrim lattice L. In the special
case when L is a Boolean lattice, we use spectral methods to obtain much stronger
estimates on the mixing time, showing that rowmotion Markov chains of Boolean
lattices exhibit the cutoff phenomenon.

Keywords: Toggle, rowmotion, Markov chain, stationary distribution, mixing time,
lattice

1 Introduction

Let P be a finite poset, and let J(P) denote the set of order ideals of P. For S ⊆ P, let

∆(S) = {x ∈ P : x ≤ s for some s ∈ S} and ∇(S) = {x ∈ P : x ≥ s for some s ∈ S},

*colindefant@gmail.com. Supported by the National Science Foundation under Award No. 2201907
and by a Benjamin Peirce Fellowship at Harvard University.

†rupertli@mit.edu.
‡evrydiki.nestoridi@stonybrook.edu. Supported by the National Science Foundation grant DMS-

2052659.

mailto:colindefant@gmail.com
mailto:rupertli@mit.edu
mailto:evrydiki.nestoridi@stonybrook.edu


2 Colin Defant, Rupert Li, and Evita Nestoridi

and let min(S) and max(S) denote the set of minimal elements and the set of maximal
elements of S, respectively. Rowmotion, a well-studied operator in the growing field of
dynamical algebraic combinatorics, is the bijection Row: J(P) → J(P) defined by1

Row(I) = P \ ∇(max(I)). (1.1)

We refer the reader to [16, 17] for the history of rowmotion. The purpose of this extended
abstract of the article [4] is to introduce randomness into the ongoing saga of rowmotion
by defining certain Markov chains. We were inspired by the articles [1, 11, 14]; these
articles define Markov chains based on the promotion operator, which is closely related to
rowmotion in special cases [16] (though our Markov chains are fundamentally different
from these promotion-based Markov chains).

For each x ∈ P, fix a probability px ∈ [0, 1]. We define the rowmotion Markov chain
MJ(P) with state space J(P) as follows. Starting from a state I ∈ J(P), select a random
subset S of max(I) by adding each element x ∈ max(I) into S with probability px;
then transition to the new state P \ ∇(S) = Row(∆(S)). Thus, for any I, I′ ∈ J(P), the
transition probability from I to I′ is

P(I → I′) =


(

∏
x∈min(P\I′)

px

)(
∏

x′∈max(I)\min(P\I′)
(1 − px′)

)
if min(P \ I′) ⊆ max(I);

0 otherwise.

Observe that if px = 1 for all x ∈ P, then MJ(P) is deterministic and agrees with the row-
motion operator. On the other hand, if px = 0 for all x ∈ P, then MJ(P) is deterministic
and sends every order ideal of P to the order ideal P.

Example 1. Suppose P is the poset

,

whose elements x, y, z are as indicated. Then J(P) forms a distributive lattice with 5
elements. The transition diagram of MJ(P) is drawn over the Hasse diagram of J(P) in
Figure 1.

Suppose each probability px is strictly between 0 and 1. One of our main results will
imply that MJ(P) is irreducible and that the probability of the state I in the stationary
distribution of MJ(P) is

1
Z(J(P)) ∏

x∈I
p−1

x , (1.2)

1Many authors define rowmotion to be the inverse of the operator that we have defined. Our definition
agrees with the conventions used in [2, 6, 17].
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Figure 1: The transition diagram of MJ(P), where P is the 3-element poset from Exam-
ple 1. The elements of each order ideal in J(P) are circled and colored blue.
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where Z(J(P)) = ∑
I′∈J(P)

∏
x′∈I′

p−1
x′ .

It is surprising that there is such a clean formula for the stationary distribution in
this level of generality. We will deduce this result from a more general result about a
vastly broader family of Markov chains.

2 Toggle Markov Chains

Let P be a finite set of size n, and let K be a collection of subsets of P. For each x ∈ P,
define the toggle operator τx : K → K by

τx(A) =

{
A△{x} if A△{x} ∈ K
A otherwise,

where △ denotes symmetric difference. Note that τx is an involution. Fix a tuple x =
(x1, . . . , xn) that contains each element of P exactly once. In other words, x is an ordering
of the elements of P. Given a set Y ⊆ P, let τY = τyr ◦ · · · ◦ τy1 , where y1, . . . , yr is the list
of elements of Y in the order that they appear within the list x1, . . . , xn.

Striker [15] viewed the map τP : K → K as a generalization of rowmotion. Indeed,
if P is a poset, x = (x1, . . . , xn) is a linear extension of P (meaning i < j whenever
xi < xj in P), and K = J(P), then τP is equal to rowmotion. The recent article [7] studies
the dynamical aspects of τP when P is a poset, x is a linear extension of P, and K is
the collection of interval-closed (also called convex) subsets of P. The articles [3, 9, 10]
consider τP when P is the vertex set of a particular graph, x is a special ordering of the
vertices, and K is the collection of independent sets of the graph.

For each x ∈ P, fix a probability px. Define the toggle Markov chain T = T(K, x) as
follows. The state space of T is K. Suppose the Markov chain is in a state A ∈ K. Choose
a subset T ⊆ A randomly so that each element x ∈ A is included in T with probability
px, and then transition from A to the new state τT(A).

To phrase this differently, define the random toggle τ̃x to be the stochastic operator
that acts as follows on a set A ∈ K. Let X be a Bernoulli random variable that takes the
value 1 with probability px, and let

τ̃x(A) =

{
τx(A) if x ̸∈ A or X = 1;
A if x ∈ A and X = 0.

Then the Markov chain transitions to the state obtained from A by applying the random
toggles τ̃x1 , . . . , τ̃xn in this order. (Each time we apply a random toggle, we use a new
Bernoulli random variable that is independent of those used before.)
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Figure 2: As in Example 2, we consider random toggles, where K is the collection of
independent sets of a path graph with vertices x, y, z (from left to right). The elements
of each independent set are circled and colored blue. To apply the random toggle τ̃x

to an independent set A, we follow one of the red arrows starting at A; the probability
that a particular arrow is used is written next to the arrow. Similarly, we follow a green
arrow when we apply τ̃y, and we follow a purple arrow when we apply τ̃z.

Example 2. Suppose G is the graph , whose vertices x, y, z are as indicated.
Let K be the collection of independent sets of G. Figure 2 depicts the random toggles
τ̃x, τ̃y, τ̃z. If we let x = (x, y, z), then a transition of T(K, x) consists of applying these
random toggles in the order τ̃x, τ̃y, τ̃z.

Given a set P, let HP be the hypercube graph with vertex set 2P (the power set of P)
such that two sets A, A′ ⊆ P are adjacent if and only if |A△A′| = 1. For S ⊆ 2P, let HP|S
be the induced subgraph of HP with vertex set S.

Let us now state our main results about irreducibility and stationary distributions of
toggle Markov chains. As before, we fix a finite set P, a collection K of subsets of P, an
ordering x of the elements of P, and a probability px for each x ∈ P.

Theorem 1 ([4]). Suppose 0 < px < 1 for each x ∈ P. The toggle Markov chain T(K, x) is
irreducible if and only if the graph HP|K is connected.

If P is a finite poset and x is a linear extension of P, then one can show that T(J (P), x)
coincides with the rowmotion Markov chain MJ(P). In this case, every connected compo-
nent of HP|J(P) contains the empty set as a vertex. Thus, it is immediate from Theorem 1
that the rowmotion Markov chain MJ(P) is irreducible whenever 0 < px < 1 for every
x ∈ P.
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Theorem 2 ([4]). Suppose the toggle Markov chain T(K, x) is irreducible and px > 0 for every
x ∈ P. For A ∈ K, the probability of the state A in the stationary distribution of T(K, x) is

1
Z(K) ∏

x∈A
p−1

x ,

where Z(K) = ∑
A′∈K

∏
x′∈A′

p−1
x′ .

Note that the stationary distribution in Theorem 2 is independent of the ordering x
(though the Markov chain itself can certainly depend on x).

3 Mixing Times

Suppose M is an irreducible finite Markov chain with state space Ω, transition matrix
Q, and stationary distribution π. For x ∈ Ω, let Qi(x, ·) denote the distribution on Ω in
which the probability of a state x′ is the probability of reaching x′ by starting at x and
applying i transitions (this probability is the entry in Qi in the row indexed by x and the
column indexed by x′). The total variation distance dTV = dΩ

TV is the metric on the space
of distributions on Ω defined by

dTV(µ, ν) = max
A⊆Ω

|µ(A)− ν(A)| = 1
2 ∑

x∈Ω
|µ(x)− ν(x)|.

For ε > 0, the mixing time of M, denoted tmix
M (ε), is the smallest nonnegative integer i

such that dTV(Qi(x, ·), π) < ε for all x ∈ Ω.
The width of a finite poset P, denoted width(P), is the maximum size of an antichain

in P. In [4], we use the method of coupling to prove the following bound on the mixing
time of an arbitrary rowmotion Markov chain.

Theorem 3 ([4]). Let P be a finite poset, and fix a probability px ∈ (0, 1) for each x ∈ P. Let
p = max

x∈P
px. For each ε > 0, the mixing time of MJ(P) satisfies

tmix
MJ(P)

(ε) ≤

 log ε

log
(

1 − (1 − p)width(P)
)
 .

We can drastically improve the bound in Theorem 3 when P is an antichain (so J(P) is
a Boolean lattice). For simplicity, we assume that all probabilities px are equal to a single
value p. In this setting, the Markov chain is reversible with respect to π; this allows us
to give a spectral proof of the following result, which is an instance of the well-studied
cutoff phenomenon.
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Theorem 4 ([4]). Let P be an n-element antichain, and fix a probability p ∈ (0, 1). Let px = p
for all x ∈ P. Let Q and π be the transition matrix and stationary distribution, respectively, of
the Markov chain MJ(P).

1. For c > 1
2 and t = 1

2 log1/p n + c, we have

max
x∈J(P)

dTV(Qt(x, ·), π) ≤ 1
2

(
ep2c−1 − 1

)1/2
.

2. For 0 < c < 1
2 log1/p n and t = 1

2 log1/p n − c, we have

max
x∈J(P)

dTV(Qt(x, ·), π) ≥ 1 − 4p2c+1 − 4p2c.

It would be interesting to prove that other natural families of toggle Markov chains
exhibit cutoff.

4 Semidistrim Lattices

If P is a finite poset, then we can order J(P) by inclusion to obtain a distributive lattice.
In fact, Birkhoff’s Fundamental Theorem of Finite Distributive Lattices states that every
finite distributive lattice is isomorphic to the lattice of order ideals of some finite poset.
Thus, instead of viewing rowmotion as a bijective operator on the set of order ideals of a
finite poset, one can equivalently view it as a bijective operator on the set of elements of
a distributive lattice. This perspective has led to more general definitions of rowmotion
in recent years. Barnard [2] showed how to extend the definition of rowmotion to the
broader family of semidistributive lattices, while Thomas and Williams [17] discussed
how to extend the definition to the family of trim lattices. (Every distributive lattice is
semidistributive and trim, but there are semidistributive lattices that are not trim and
trim lattices that are not semidistributive.)

One notable example motivating these extended definitions comes from Reading’s
Cambrian lattices [12]. Suppose c is a Coxeter element of a finite Coxeter group W.
Reading [13] found a bijection from the c-Cambrian lattice to the c-noncrossing partition
lattice of W; under this bijection, rowmotion on the c-Cambrian lattice corresponds to
the well-studied Kreweras complementation operator on the c-noncrossing partition lattice
of W [2, 17]. See [5, 8, 17] for other non-distributive lattices where rowmotion has been
studied.

Recently, the first author and Williams [6] introduced the even broader family of
semidistrim lattices and showed how to define a natural rowmotion operator on them; this
is now the broadest family of lattices where rowmotion has been defined. It turns out
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that we can extend our definition of rowmotion Markov chains to semidistrim lattices;
this provides a generalization of rowmotion Markov chains that is different from the
toggle Markov chains discussed in Section 2. We sketch the details here, referring to [4]
for the full definition of a semidistrim lattice and an explanation of why this definition
specializes to the one given above when the lattice is distributive.

Let L be a semidistrim lattice, and let JL and ML be the set of join-irreducible ele-
ments of L and the set of meet-irreducible elements of L, respectively. There is a specific
bijection κL : JL → ML satisfying certain properties. The Galois graph of L is the loopless
directed graph GL with vertex set JL such that for all distinct j, j′ ∈ JL, there is an arrow
j → j′ if and only if j ̸≤ κL(j′). Let Ind(GL) be the set of independent sets of GL. There
is a particular way to label the edges of the Hasse diagram of L with elements of JL;
we write juv for the label of the edge u ⋖ v. For w ∈ L, let DL(w) be the set of labels of
the edges of the form u ⋖ w, and let UL(w) be the set of labels of the edges of the form
w ⋖ v. Then DL(w) and UL(w) are actually independent sets of GL. Moreover, the maps
DL,UL : L → Ind(GL) are bijections. The rowmotion operator Row: L → L is defined by
Row = U−1

L ◦ DL.
The rowmotion Markov chain ML has L as its set of states. For each j ∈ JL, we fix a

probability pj ∈ [0, 1]. Starting at a state u ∈ L, we choose a random subset S of DL(u)
by adding each element j ∈ DL(u) into S with probability pj and then transition to the
new state u′ = RowL(

∨
S).

When pj = 1 for all j ∈ JL, the Markov chain ML is deterministic and agrees with
rowmotion; indeed, this follows from [6, Theorem 5.6], which tells us that

∨DL(u) = u
for all u ∈ L.

Our main result about rowmotion Markov chains of semidistrim lattices is as follows.

Theorem 5 ([4]). Let L be a semidistrim lattice, and fix a probability pj ∈ (0, 1) for each join-
irreducible element j ∈ JL. The rowmotion Markov chain ML is irreducible.

Let us remark that this theorem is not at all obvious. Our proof uses a delicate
induction that relies on some difficult results about semidistrim lattices proven in [6].
For example, we use the fact that intervals in semidistrim lattices are semidistrim.

We can also generalize Theorem 3 to the realm of semidistrim lattices in the following
theorem. Given a semidistrim lattice L and an element u ∈ L, we write ddeg(u) for
the down-degree of u, which is the number of elements of L covered by u. Let α(GL)
denote the independence number of the Galois graph GL; that is, α(GL) = max

I∈Ind(GL)
|I|.

Equivalently, α(GL) = max
u∈L

ddeg(u). If P is a finite poset, then α(GJ(P)) = width(P).

Theorem 6 ([4]). Let L be a semidistrim lattice, and fix a probability pj ∈ (0, 1) for each j ∈ JL.
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Let p = max
j∈JL

pj. For each ε > 0, the mixing time of ML satisfies

tmix
ML

(ε) ≤

 log ε

log
(

1 − (1 − p)α(GL)
)
 .

We were not able to find a formula for the stationary distribution of the rowmotion
Markov chain of an arbitrary semidistrim (or even semidistributive or trim) lattice; this
serves to underscore the anomalistic nature of the formula for distributive lattices in (1.2).
However, there is one family of semidistrim (in fact, semidistributive) lattices where we
were able to find such a formula. Given positive integers a and b, let a,b be the lattice
obtained by taking two disjoint chains x1 < · · · < xa and y1 < · · · < yb and adding
a bottom element 0̂ and a top element 1̂. Let us remark that m−1,m−1 is isomorphic
to the weak order of the dihedral group of order 2m, whereas m−1,1 is isomorphic to
the c-Cambrian lattice of that same dihedral group (for any Coxeter element c). We
have J

a,b
= M

a,b
= {x1, . . . , xa, y1, . . . , yb}. For 2 ≤ i ≤ a and 2 ≤ i′ ≤ b, we have

κ
a,b
(xi) = xi−1 and κ

a,b
(yi′) = yi′−1; moreover, κ

a,b
(x1) = yb and κ

a,b
(y1) = xa. This is

illustrated in Figure 3 when a = 3 and b = 2. Figure 4 shows the transition diagram of
M

2,1
.

Theorem 7 ([4]). Fix positive integers a and b, and let κ = κ
a,b

. For each j ∈ J
a,b

, fix a
probability pj ∈ (0, 1). There is a constant Z( a,b) (depending only on a and b) such that in the
stationary distribution of M

a,b
, we have

P(0̂) =
1

Z( a,b)
px1 py1

1 − ∏
j∈J

a,b

pj

 ;

P(1̂) =
1

Z( a,b)

1 − ∏
j∈J

a,b

pj

 ;

P(xi) =
1

Z( a,b)

(1 − px1) ∏
j∈J

a,b
κ(j)≥xi

pj + (1 − py1) ∏
j∈J

a,b
κ(j) ̸<xi

pj

 for 1 ≤ i ≤ a;

P(yi) =
1

Z( a,b)

(1 − py1) ∏
j∈J

a,b
κ(j)≥yi

pj + (1 − px1) ∏
j∈J

a,b
κ(j) ̸<yi

pj

 for 1 ≤ i ≤ b.
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Figure 3: The lattice 3,2. Next to each edge u ⋖ v is a box containing the edge label
juv. The red arrows represent the action of κ

3,2
.

5 Future Directions

In Theorem 4, we saw that the rowmotion Markov chains of Boolean lattices exhibit
the cutoff phenomenon. It would be very interesting to obtain similar results for other
toggle Markov chains. Some particularly interesting toggle Markov chains T(K, x) are
as follows:

• Let P be the set of vertices of a graph G, let K be the collection of independent sets
of G, and let x be some special ordering of P. For example, if G is a cycle graph,
then x could be the ordering obtained by reading the vertices of G clockwise.

• Let P be an n-element set, and let x be an arbitrary ordering of the elements of P.
For 0 ≤ k ≤ n, let K = {I ⊆ P : |I| ≤ k}.

• Let P be an n-element set, and let x be an arbitrary ordering of the elements of P.
For 0 ≤ k ≤ n, let K = {I ⊆ P : |I| ≥ k}.
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It would also be interesting to improve our estimates for the mixing times of rowmotion
Markov chains for other families of semidistrim (or just distributive) lattices.

Figure 4: The transition diagram of M
2,1

drawn over the Hasse diagram of 2,1. Next
to each edge u ⋖ v is a box containing the edge label juv.

In Theorems 2 and 7, we computed the stationary distributions of rowmotion Markov
chains of distributive lattices and the lattices a,b. It would be quite interesting to find
other special families of semidistrim lattices for which one can compute these stationary
distributions.
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