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Abstract. Given an n-vertex digraph D and a labeling σ : V(D) → [n], we say that
an arc u → v of D is a descent of σ if σ(u) > σ(v). Foata and Zeilberger introduced a
generating function AD(t) for labelings of D weighted by descents, which simultane-
ously generalizes both Eulerian polynomials and Mahonian polynomials. Motivated
by work of Kalai, we look at problems related to −1 evaluations of AD(t). In par-
ticular, we give a combinatorial interpretation of |AD(−1)| in terms of “generalized
alternating permutations” whenever the underlying graph of D is bipartite.
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1 Introduction

Descents and inversions are two of the oldest and most well-studied permutation statistics
dating back to work of MacMahon [15, 14]. A descent of a permutation σ ∈ Sn on the set
[n] := {1, 2, . . . , n} is an index i ∈ [n − 1] such that σ(i) > σ(i + 1), and an inversion is a
pair of integers (i, j) with 1 ≤ i < j ≤ n such that σ(i) > σ(j). The number of descents
and inversions of σ are denoted by des(σ) and inv(σ), respectively.

The generating functions

An(t) = ∑
σ∈Sn

tdes(σ) Mn(t) = ∑
σ∈Sn

tinv(σ)

are called the Eulerian and Mahonian polynomials respectively. Both of these polynomials
are important objects of study in many branches of combinatorics and have been gen-
eralized in many different ways. In this paper, we consider a polynomial due to Foata
and Zeilberger [9] which generalizes both the Eulerian and Mahonian polynomials via
directed graphs.

A permutation of an n-vertex digraph D = (V, E) is a bijection σ : V → [n]. We will
use the notation SD, SV , or Sn to denote the set of permutations of D. For a given
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directed graph D = (V, E) and a permutation σ of D, a D-descent (or just descent when
D is understood) is an arc u → v such that σ(u) > σ(v). The total number of D-descents
of a permutation σ is denoted by desD(σ); see Figure 1 for an example.
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Figure 1: Two labelings π : V(D) → [5] where descent arcs are marked by red dashed
lines.

These statistics generalize both of des and inv as Figure 2 shows.

2 3 1 5 4

(a) des(23154) = 2

2 3 1 5 4

(b) inv(23154) = 3

Figure 2: The Eulerian polynomial AD(t) generalizes both descents and inversions.

With all this in mind, we can now define the central object of study for this paper:
the Eulerian polynomial of a digraph D = (V, E) is the generating function

AD(t) = ∑
σ∈SD

tdesD(σ). (1.1)

In particular, we have A−→
Pn
(t) = An(t) and A−→

Kn
(t) = Mn(t).

This polynomial can be seen in other work: as a weighted-inversion generating function
as in [11, 5]; as an Eulerian polynomial for a (particular) family Bn of digraphs [1]; as a
specialization of the chromatic quasisymmetric function for digraph [6] and B-polynomial [2].
There are also a myriad of other objects generalizing Eulerian polynomials which are
related by varying degrees to ours.

The primary objective of this extended abstract is to study evaluations of AD(t) at −1.
See [4] for the full paper. This is a problem in the area of combinatorial reciprocity, which
studies combinatorial polynomials evaluated at negative integers. For example, the clas-
sical Eulerian and Mahonian polynomials both have good combinatorial interpretations
for their evaluation at −1: the former being the number of alternating permutations [8]
and the latter being the number of correct proofs of the Riemann hypothesis1. Many more
results on combinatorial reciprocity can be found in the book by Beck and Sanyal [3].

1As of the time of writing.
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Kalai [12, Section 8.1] makes a critical observation about AD(−1).

Proposition 1.1. If D, D′ are orientations of the same graph G, then |AD(−1)| = |AD′(−1)|.

With Proposition 1.1 in mind, for any graph G we can define

ν(G) := |AD(−1)|,

where D is any orientation of G. The problem of studying ν(G) was first introduced by
Kalai [12] due to its relation with the Condorcet paradox in social choice theory, and a
few basic properties of ν(G) were established by Even-Zohar [7]. Outside of this, nothing
seems to be known about ν(G) despite Kalai raising the problem over 20 years ago.

In this extended abstract, we prove three types of results related to ν(G): we give
combinatorial interpretations for ν(G) for a large class of graphs G, we determine the
maximum and minimum values achieved by ν(G) amongst n vertex trees, and we con-
sider the refined problem of determining the multiplicity of −1 as a root of AD(t).

2 Combinatorial Interpretations for ν(G)

A classical result of Foata and Schützenberger [8] (see also [16, Exercise 135]) states that
for odd n the Eulerian polynomial An(t) evaluated at t = −1 is equal (up to sign) to
the number of alternating permutations of length n, i.e. the number of permutations σ and
σ(1) < σ(2) > σ(3) < · · · > σ(n). Because An(t) = A−→

P n
(t) for

−→
P n the directed path,

this result implies ν(Pn) is equal to the number of alternating permutations of size n.
Given this observation, it is natural to expect ν(G) to count “alternating permutations

for graphs” for some generalized notion of alternating permutations. There are many
such generalizations one could consider, for example, one could force every maximal
path of G to be an alternating permutation. However, it turns out that the definition we
will want to consider is the following (non-obvious) generalization.

Definition 2.1. Given an n-vertex graph G, we say that an ordering π = (π1, . . . , πn) of
the vertex set V(G) is an even sequence if each of the subgraphs G[π1, . . . , πi] induced by
the first i vertices of π have an even number of edges for all 1 ≤ i ≤ n. We let η(G)
denote the number of even sequences of G.

Lemma 2.2. For any graph G,

(a) ν(G) ≤ ∑v∈V(G) ν(G − v).

(b) If G has an odd number of edges, η(G) = 0. Otherwise, η(G) = ∑v∈V(G) η(G − v).

(c) ν(G) ≤ η(G).
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Figure 3: A depiction of the induced subgraphs P5[π1, . . . , πi] for the ordering
π = (3, 1, 2, 5, 4) of the path graph P5. Note that π is an even sequence since each
of these induced subgraphs have an even number of edges. We also observe that
π−1 = (2, 3, 1, 5, 4) is an alternating permutation.

One can verify that even sequences for the path graph Pn with vertex set [n] are
exactly inverses of alternating permutations of size n, so ν(Pn) = η(Pn) in this case. Our
main result shows that this equality holds for a substantially larger class of graphs.

To state this result, we remind the reader that a graph is complete multipartite if one
can partition its vertices into sets V1, . . . , Vr such that u and v are adjacent if and only if
u ∈ Vi, v ∈ Vj for some i ̸= j. We say that a graph is a blowup of a cycle if one can partition
its vertices into sets V1, . . . , Vr such that u and v are adjacent if and only if u ∈ Vi and
v ∈ Vi+1 for some i (with the indices written mod r).

Theorem 2.3. If G is a graph which is either bipartite, complete multipartite, or a blowup of a
cycle, then ν(G) = η(G).

The proofs for each of these cases follows the same basic strategy: We first show
that for some “natural” orientation D of G, we can easily predict the sign of AD(−1).
From this we deduce ν(G) = ∑ ν(G − v), and hence that ν(G) = η(G) since the statistics
ν, η satisfy the same recurrence relation. Accordingly, we will only discuss the proof for
bipartite graphs in this extended abstract, leaving the other classes of graphs for the full
paper.

Lemma 2.4. Let D be a digraph such that one can partition its vertex set into U ∪ V such that
every arc u → v of D has u ∈ U and v ∈ V. Then

AD(−1) ≥ 0,

and if D has an even number of arcs, then

AD(−1) = ∑
v∈V(D)

AD−v(−1).
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Corollary 2.5. If G is a bipartite graph with an odd number of edges, then ν(G) = 0, and
otherwise ν(G) = ∑v ν(G − v).

Proof of Theorem 2.3. We aim to show that ν(G) = η(G) whenever G is bipartite, complete
multipartite, or a blowup of a cycle. We first consider the case that G is bipartite. We
prove this result by induction on |V(G)|, the base case ν(K1) = η(K1) = 1 being trivial.
By Corollary 2.5 and Lemma 2.2, if G has an odd number of edges then ν(G) = η(G) = 0,
and otherwise

ν(G) = ∑
v∈V(G)

ν(G − v) = ∑
v∈V(G)

η(G − v) = η(G),

where the middle equality used the inductive hypothesis (and that G − v is bipartite
whenever G is).

It is tempting to try to generalize this approach by finding “natural” orientations
of other graphs in order to show ν(G) = ∑ ν(G − v); see for example Conjecture 5.2.
However, the following theorem shows that the inductive proof of Theorem 2.3 can not
be extended beyond the class of graphs which are bipartite, complete multipartite, or
blowups of cycles.

Theorem 2.6. If G is a connected graph such that ν(G′) = η(G′) for all induced subgraphs
G′ ⊆ G, then G is either bipartite, complete multipartite, or a blowup of a cycle.

Our proof of Theorem 2.6 relies on a structural graph theory result which may be
of independent interest. The odd pan graph C∗

2k+1 is defined to be the graph obtained by
taking the odd cycle C2k+1 and then adding a new vertex u adjacent to exactly one vertex
of C2k+1. We say that a graph G is odd pan-free if it contains no induced subgraph which
is isomorphic to C∗

2k+1 for any k ≥ 1.

Proposition 2.7. If G is a connected graph, then G is odd pan-free if and only if it is either
bipartite, complete multipartite, or a blowup of a cycle.

While we do not have a full understanding of ν(G) for arbitrary graphs, we are able
to prove several other results regarding ν(G), such as the general bound ν(G) ≤ η(G) in
the full paper.

3 Upper and lower bounds of ν(G) and η(G)

We next turn to the extremal problem of studying the largest and smallest possible values
of ν(G) and η(G). For arbitrary n-vertex graphs this is an uninteresting problem, since
ν(Kn) = η(Kn) = n! and ν(Kn) = η(Kn) = 0 for n ≥ 2 are easily seen to achieve the
maximum and minimum possible values. However, this problem becomes non-trivial
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when one looks at smaller classes of graphs. To this end, we consider these extremal
problems for trees.

To state our result, we recall that a tree is a star K1,n if there is a single-non leaf vertex;
see Figure 4a. We say that a tree is a hairbrush if it consists of a path v0v1 · · · vn such that
each vertex vi with i ≥ 1 is adjacent to a leaf ui; see Figure 4b.

v0

v1 v2 v3 v4 v5 v6

(a) The star K1,6

v0 v1 v2 v3

u1 u2 u3

(b) The hairbrush H3

Theorem 3.1. If T is a tree on 2n + 1 vertices, then

n!2n ≤ ν(T) = η(T) ≤ (2n)!

Moreover, equality holds in the lower bound if and only if T is a hairbrush, and equality holds in
the upper bound if and only if T is a star.

To aid with our proofs, given a tree T, we define

X̃(T) = {x ∈ V(T) : each component of T − x has an even number of edges},

and we will denote this simply by X̃ whenever T is understood. Our motivation for this
definition is the following.

Lemma 3.2. If T is a tree with an even number of edges, then

ν(T) = ∑
x∈X̃

ν(T − x).

With this lemma in mind, the idea for the proofs of the upper and lower bounds is
as follows: we first apply Lemma 3.2 and then use induction to bound each of the terms
ν(T − x) in the sum. Finally, we bound our total sum in terms of |X̃| and show that
equality can only occur when |X̃| = 1. In particular, we can show that

n!2n ≤ ν(T − x) ≤ 1
2|X̃| − 1

(2n)! (3.1)

for all trees with an even number of edges and x ∈ X̃ and so the result follows.

Remark 3.3. Our proofs yield slightly stronger bounds on ν(T) whenever X̃ is large.
For example, (3.1) gives the lower bound ν(T) ≥ |X̃|n!2n. Bounds of this form are
known as stability results in extremal graph theory, which roughly are results saying that
bounds for a graph T can be substantially improved if T is “far” from a unique extremal
construction. Here, T being “far” from Hn and K1,2n is measured by having |X̃| large.
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4 Multiplicity of Roots

Lastly, we consider the problem of determining the multiplicity of −1 as a root of AD(t),
and we denote this quantity by mult(AD(t),−1).

One of the first questions one might ask in this setting is how large mult(AD(t),−1)
can be amongst all n-vertex digraphs? Trivially, mult(AD(t),−1) ≤ e(D) (since the
degree of AD(t) is at most e(D)), which implies mult(AD(t),−1) ≤ (n

2) if D has n
vertices. We prove a substantially stronger upper bound which turns out to be sharp.

Theorem 4.1. If D is an n-vertex digraph, then

mult(AD(t),−1) ≤ n − s2(n),

where s2(n) denotes the number of 1’s in the binary expansion of n. Moreover, for all n, there
exist n-vertex digraphs D with mult(AD(t),−1) = n − s2(n).

The upper bound can be achieved with the following construction. Given digraphs
D1, D2, and a root vertex v ∈ D2, the rooted product digraph, denoted D1 ◦v D2, is obtained
by gluing a copy of D2 at v to each vertex of D1, see Figure 5 for an example.

−→
P4

−→
K3

−→
P4 ◦v

−→
K3

v

Figure 5: The rooted product digraph
−→
P4 ◦v

−→
K3 with the vertex v highlighted in black.

This product was first defined by Godsil and McKay [10], and it turns out that this
operation plays very nicely with the Eulerian polynomial.

Proposition 4.2. Let D1 and D2 be two digraphs on m and n vertices respectively. If v ∈ D2,
then

AD1◦vD2(t) =
1

m!

(
mn

n, . . . , n

)
AD1(t)AD2(t)

m.

In particular, the polynomial is the same for any choice of root v ∈ D2.

Remark 4.3. The last line of the statement implies that there are non-isomorphic di-
graphs with the same Eulerian polynomial.
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With this, we first consider the case when n = 2m for some m ≥ 1. Let P2 be the graph
on vertices v1, v2 with a single arc v1 → v2. Define a sequence of digraphs {Lm}m∈N by

L1 = P2 and Lm+1 = Lm ◦v1 P2.

We observe that Lm has 2m vertices and 2m − 1 arcs. Then from Proposition 4.2, we have

ALm(t) = (2m)!
(

1 + t
2

)2m−1

.

Since s2(2m) = 1, this gives the desired construction when n is a power of two. For
arbitrary n, we let a1, . . . , aℓ be the indices of nonzero powers of 2 in the binary expansion
of n and then define D to be the disjoint union of the digraphs La1 , . . . , Laℓ . Then AD(t)
gives the desired upper bound.

We also obtain a general lower bound on mult(AD(t),−1).

Proposition 4.4. Let D be an orientation of an n-vertex graph G. If every matching in the
complement of G has size at most m, then mult(AD(t),−1) ≥ ⌊n

2 ⌋ − m.

Roughly speaking, Proposition 4.4 says that if G is “dense” (i.e. if the complement
of G contains small only matchings), then mult(AD(t),−1) will be large. While Propo-
sition 4.4 is not tight in general, it turns out to be tight if D is an orientation of the
complete graph as we show now.

Let OP(α) denote the set of all ordered set partitions of type α, and let SP(λ) denote
the set of all unordered set partitions with type λ. For two sets S, T of vertices in a
digraph D, let eD(S, T) be the number of edges which start in S and end in T. For a
digraph D and an ordered set partition P = (P1, . . . , Pk) of the vertices of D of length k
and i ∈ [k], define the i-th forward sequence number of P to be

FSD,P(i) =
k

∑
j=i+1

eD(Pi, Pj)

and the i-th reverse sequence number of P to be

RSD,P(i) =
k

∑
j=i+1

eD(Pj, Pi)

where we set FSD,P(k) = 0 and RSD,P(1) = 0.
With this notation in hand, we can factor the Eulerian polynomial.

Lemma 4.5. If D is a tournament on the vertex set [n] and α is the integer composition (2k) of n
if n is even and (1, 2k) if n is odd, then

AD(t) = (1 + t)k 1
2k ∑

P∈OP(α)

k

∏
i=1

tFSD,P(i) + tRSD,P(i).
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A parity argument shows that the sum in the lemma does not have -1 as a root.
Therefore, we obtain the following.

Theorem 4.6. If D is a tournament on n vertices, then mult(AD(t),−1) = ⌊n
2 ⌋.

More generally, we suspect that Proposition 4.4 is tight for orientations of complete
multipartite graphs; see Conjecture 5.4 for more.

Given Theorem 4.6 and the fact that |AD(−1)| = |AD′(−1)| whenever D, D′ are ori-
entations of the same graph, it is perhaps natural to guess that mult(AD(t),−1) depends
only on the underlying graph of D. This turns out to be false; see Figure 6 for a coun-
terexample.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Figure 6: Two orientations of the same graph with different −1 multiplicities. The
digraph on the left has AD1(t) = (1 + t)3(1 + t + 11t2 + t3 + t4) while the one on the
right has AD2(t) = (1 + t)(1 + 5t + 16t2 + 16t3 + 16t4 + 5t5 + t6).

5 Concluding Remarks and Open Problems

In this extended abstract, we studied a notion of Eulerian polynomials AD(t) for di-
graphs D and proved a number of results related to evaluations at t = −1. We conclude
by listing a number of remaining open problems themed around interpreting ν(G) and
multiplicities of −1 as a root of AD(t).

Interpretations for ν(G). Recall that for any graph G we define ν(G) = |AD(−1)|
where D is any orientation of G. While Theorem 2.3 provides a combinatorial interpre-
tation for ν(G) when G is bipartite, complete bipartite, or a blowup of a cycle, we are
still far from understanding this quantity for general graphs, which we leave as the main
open problem for this paper.

Question 5.1. Can one give a combinatorial interpretation for ν(G) for arbitrary graphs G?
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In view of Theorem 2.3 and the bound ν(G) ≤ η(G) from Lemma 2.2(a), we suspect
that in general ν(G) should count even sequences of G with some special properties, but
what these properties should be remains a mystery.

To answer Question 5.1, it might be useful to establish which graphs G satisfy ν(G) =

∑v ν(G − v), as recurrences of this form were a key step in proving Theorem 2.3. In
particular, computational evidence suggests that the following could hold, where here
we recall that a graph is Eulerian if all of its degrees are even.

Conjecture 5.2. If G is an Eulerian graph, then ν(G) = ∑v ν(G − v).

We note that an Eulerian graph has a “natural” orientation via orienting each edge ac-
cording to an Eulerian tour. Given that e.g. our proof of Corollary 2.5 relied on “natural”
orientations of bipartite graphs, it is plausible that this natural orientation for Eulerian
graphs could be used to prove Conjecture 5.2.

Our proof of Theorem 2.3 is non-combinatorial, and it would be interesting to have a
more direct combinatorial proof of this fact, say for bipartite graphs.

Problem 5.3. For any bipartite graph G = ([n], E) and orientation D of G, construct an explicit
involution φ : Sn → Sn such that

(a) The set of fixed points Fφ of φ is the set of (inverses of) even sequences of G, and

(b) (−1)desD(σ) = −(−1)desD(φ(σ)) for all σ /∈ Fφ.

Such an involution is known to exist when G = Pn (i.e. when inverses of even se-
quences are exactly alternating permutations), but this involution is somewhat complex;
see [16, Exercise 135] for more.

Multiplicity of Roots. In Theorem 4.6 we showed every n vertex tournament D has
−1 as a root of AD(t) with multiplicity exactly ⌊n

2 ⌋. A natural generalization of this
result would be the following.

Conjecture 5.4. If D is the orientation of a complete multipartite graph which has r parts of odd
size, then mult(AD(t),−1) = ⌊ r

2⌋.

Observe that the bound mult(AD(t),−1) ≥ ⌊ r
2⌋ follows from Proposition 4.4, so the

difficulty lies in proving the upper bound.
Another direction is to look at the more general quantity mult(AD(t), α), which is

defined to be the multiplicity of α as a root of AD(t). For example, it is not difficult to
see that mult(AD(t), 0) is equal to the minimum number of arcs that one must remove
in D to obtain an acyclic digraph. Such a set of arcs is known as a minimum feedback arc
set, and determining the size of such a set is well known to be an NP-Complete problem
[13].

This connection to feedback arc sets, together with the results of this paper, estab-
lishes a number of results for mult(AD(t), α) when α ∈ {0,−1}, and it is natural to ask
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what can be said about other integral values of α. An immediate obstacle to this is the
following.

Question 5.5. Does there exist a digraph D such that AD(t) has an integral root which is not
equal to either 0 or −1?

We have verified that no such digraph exists on at most 5 vertices. We also note that
there exist digraphs with real roots of magnitude larger than 2, so the obstruction to
finding these integral roots is not that their magnitudes are too large.
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