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Abstract. We devise a constructive method for computing explicit combinatorial for-
mulae for Hadamard products of certain rational generating functions. The latter arise
naturally when studying so-called ask zeta functions of direct sums of modules of
matrices or class- and orbit-counting zeta functions of direct products of groups. Our
method relies on shuffle compatibility of coloured permutation statistics and coloured
quasisymmetric functions, extending recent work of Gessel and Zhuang.
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1 Introduction

Permutation statistics are functions defined on permutations and their generalisations.
Studying the behaviour of said functions on sets of permutations is a classical theme in
algebraic and enumerative combinatorics. The origins of permutation statistics can be
traced back to work of Euler and MacMahon. The past decades saw a flurry of further
developments in the area; see e.g. [2, 32] and references therein. Recently, Gessel and
Zhuang [17] developed an algebraic framework for systematically studying so-called
shuffle-compatible permutation statistics by means of associated shuffle algebras. In
their work, quasisymmetric functions and Hadamard products of rational generating
functions played key roles.

Numerous types of zeta functions have been employed in the study of enumerative
problems surrounding algebraic structures. L. Solomon [31] introduced zeta functions
associated with integral representations and, in another influential paper, Grunewald,
Segal, and Smith [18] initiated the study of zeta functions associated with (nilpotent and
pro-p) groups. Following [18], a variety of methods have been developed and applied to
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predict the behaviour and study symmetries of zeta functions associated with algebraic
structures, and to produce explicit formulae. Theoretical work of this type often employs
a blend of combinatorics and p-adic integration; see [35] for a survey. On the practical
side, a range of effective methods have been devised and used to symbolically compute
zeta functions of algebraic structures; see [25] and the references therein.

A common feature of zeta functions ζGpsq attached to algebraic structures G (e.g.
groups) in the literature is that they often admit an Euler factorisation ζGpsq “

ś

p ζG,ppsq

into so-called local factors indexed by primes p. Deep results from p-adic integration
often guarantee that these local factors are rational in p´s, i.e. of the form ζG,ppsq “

Wppp´sq for some WppYq P QpYq. A key theme is then to study how the WppYq vary with
the prime p. In a surprising number of cases of interest, deep uniformity results ensure
the existence of a single bivariate rational function WpX, Yq such that ζG,ppsq “ Wpp, p´sq

for all primes p (perhaps excluding a finite number of exceptions). In such situations,
understanding our zeta function is tantamount to understanding WpX, Yq.

In this context, permutation statistics (and, more generally, combinatorial objects)
have recently found spectacular applications, in particular when it comes to describing
the numerators of the rational functions WpX, Yq from above; see, for instance, [1, 12,
9, 8, 10, 34]. Conversely, the need for combinatorial descriptions of such zeta functions
gave rise to new directions in the study of permutation statistics and, more generally,
combinatorial objects; see, e.g. [4, 5, 11, 13, 16, 14, 33].

In the spirit of this line of research, in the present work we relate permutation statis-
tics and ask zeta functions. Introduced in [26] and developed further in [27, 30, 7], ask zeta
functions are generating functions encoding average sizes of kernels in suitable modules
of matrices. One motivation for studying these functions comes from group theory. In-
deed, for groups with a sufficiently powerful Lie theory, the enumeration of linear orbits
and conjugacy classes boils down to determining average sizes of kernels within matrix
Lie algebras—this is essentially the orbit-counting lemma.

Amidst a plethora of algebraically-defined zeta functions, ask zeta functions stand
out as particularly amenable to combinatorial methods. Indeed, natural operations at the
level of the modules (or groups) often translate into natural operations of corresponding
rational generating functions. In particular, ask zeta functions of direct sums of modules
are Hadamard products of the ask zeta function of the summands.

In this extended abstract (and forthcoming preprint [6]) we answer some of the ques-
tions from [30] and give a constructive algorithm (based on coloured shuffle compatibility
of permutation statistics) to compute Hadamard products of certain ask zeta functions.
Our results have corollaries pertaining to generating functions enumerating orbits of
finite direct products of groups within various infinite families.
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2 Hadamard products and coloured configurations

In this section, we provide a self-contained account of our main result pertaining to
Hadamard products of suitable rational generating functions. Its proof relies on the
coloured shuffle compatibility of certain permutation statistics and the structure of asso-
ciated coloured shuffle algebras. We will describe the latter in Section 3.

Coloured permutations and descents. We consider coloured permutations with sym-
bols taken from the poset Σ “ t1 ă 2 ă . . . u and colours taken from Γ “ t0 ą 1 ą

2 ą ¨ ¨ ¨ u. Let a “ σγ “ σ
γ1
1 ¨ ¨ ¨ σ

γn
n be a coloured permutation. We write |a| “ n for

the length of a. We further write sympaq “ tσ1, . . . , σnu, palpaq “ tγ1, . . . , γnu, and
pal˚paq “ palpaqzt0u. On the set of Γ-coloured positive integers, consider the total order

¨ ¨ ¨ ă 11
ă 21

ă ¨ ¨ ¨ ă 10
ă 20

ă . . . ;

that is, σ
γ1
1 ă σ

γ2
2 if and only if γ1 “ γ2 and σ1 ă σ2, or if γ1 ą γ2 in Z (equivalently:

γ1 ă γ2 in Γ). This is the usual colour order, corresponding to the left lexicographic order
on Γ ˆ Σ. The descent set of a as above consists of all i P rn ´ 1s such that σ

γi
i ą σ

γi`1
i`1

together with 0 whenever γ1 ‰ 0. The descent number and comajor index are defined as
always as functions of the descent set: despaq “ |Despaq| and comajpaq “

ř

iPDespaqpn ´ iq.

Coloured configurations. Let A be the set of all coloured permutations, and let ZA
be the free abelian group with basis A. We call elements of ZA coloured configurations.
These elements are of the form f “

ř

aPA faa, where each fa belongs to Z and almost
all fa are zero. Write suppp f q “ ta P A : fa ‰ 0u, symp f q “

Ť

aPsuppp f q sympaq, and
pal˚p f q “

Ť

aPsuppp f q pal˚paq. We call f , g P ZA strongly disjoint if symp f q X sympgq “

∅ “ pal˚p f q X pal˚pgq. For a, b P A, let a� b P ZA be the sum over all shuffles of a and
b. We extend � to a bi-additive product on ZA.

Labels. Let U “ t˘Xk : k P Zu, viewed as a subgroup of the multiplicative group of the
field QpXq. For α : Γ Ñ U, write supppαq “ tc P Γ : αpcq ‰ 1u and, for a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n as

above, let αpaq “
śn

i“1 αpγiq. A labelled coloured configuration is a pair p f , αq, where f P ZA
and α : Γ Ñ U satisfies supppαq Ď pal˚p f q. Given labelled coloured configurations p f , αq

and pg, βq such that f and g are strongly disjoint, the pair p f � g, αβq is a labelled coloured
configuration too. (Here, αβ denotes the pointwise product of α and β.)

Equivalence. Let p f , αq be a labelled coloured configuration. Let ϕ : symp f q Ñ S
and ψ : pal˚p f q Ñ P be order-preserving bijections onto finite subsets of Σ and Γzt0u,
respectively. Given ϕ and ψ, define a labelled coloured permutation p f 1, α1q as fol-
lows. For a P suppp f q, say a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n , write a1 “ ϕpσ1qψpγ1q ¨ ¨ ¨ ϕpσnqψpγnq. Define

f 1 “
ř

aPsuppp f q faa1. The support of α1 is P and α1pψpcqq “ αpcq for c P pal˚p f q. We
call p f , αq and each p f 1, α1q (as ϕ and ψ range over possible choices) equivalent, written
p f , αq — p f 1, α1q. This defines an equivalence relation on labelled coloured configurations.
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Rational functions. Given a labelled coloured configuration p f , αq and ε P Z, we define
a rational formal power series

Wε
f ,α “ Wε

f ,αpX, Yq “
ÿ

aPsuppp f q

fa
αpaqXε comajpaqYdespaq

p1 ´ Yqp1 ´ XεYq ¨ ¨ ¨ p1 ´ Xε|a|Yq
P QpXqrrYss.

Note that, by construction, if p f , αq — p f 1, α1q, then Wε
f ,α “ Wε

f 1,α1 for all ε P Z.

Example 2.1. Let f “ 10 ` 11. Let α : Γ Ñ U with supppαq Ď pal˚p f q “ t1u. Then

Wε
f ,α “

1 ` αp1qXεY
p1 ´ Yqp1 ´ XεYq

.

Recall that the Hadamard product of two formal power series ApYq “
ř8

k“0 akYk and
BpYq “

ř8
k“0 bkYk is the power series ApYq ˚Y BpYq “

ř8
k“0 akbkYk.

Theorem 2.2. Let p f , αq and pg, βq be labelled coloured configurations such that f and g are
strongly disjoint. Then Wε

f ,α ˚Y Wε
g,β “ Wε

f�g, αβ for each ε P Z.

Example 2.3. Let f “ 10 ` 11 and g “ 20 ` 22. Then

f � g “ p10
` 11

q� p20
` 22

q

“ 10
� 20

` 10
� 22

` 11
� 20

` 11
� 22

“ 1020
` 2010

` 1022
` 2210

` 1120
` 2011

` 1122
` 2211.

Let α and β satisfy supppαq Ď t1u and supppβq Ď t2u. By Theorem 2.2,

Wε
f ,α ˚Y Wε

g,β “
1 ` αp1qXεY

p1 ´ Yqp1 ´ XεYq
˚Y

1 ` βp2qXεY
p1 ´ Yqp1 ´ XεYq

“
1 ` p1 ` αp1q ` βp2qqXεY ` pαp1q ` βp2q ` αp1qβp2qqX2εY ` αp1qβp2qX3εY2

p1 ´ Yqp1 ´ XεYqp1 ´ X2εYq

“ Wε
f�g, αβ.

Theorem 2.2 implies, in particular, that for each fixed ε P Z, the set
!

Wε
f ,α : p f , αq is a coloured configuration

)

is closed under Hadamard products in Y. Indeed, given coloured configurations p f , αq

and pg, βq, we can find pg1, β1q such that f and g1 are strongly disjoint and pg, βq — pg1, β1q.
In that case, Wε

f ,α ˚Y Wε
g,β “ Wε

f ,α ˚Y Wε
g1,β1 “ Wε

f�g1, αβ1 is computed by the preceding
theorem.

In Section 4, we will apply Theorem 2.2 to provide explicit combinatorial descriptions
of Hadamard products of ask, class- and orbit-counting zeta functions.
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3 Coloured shuffle compatibility

For technical reasons, in this section, we will only consider coloured permutations with
colours drawn from t0 ą 1 ą ¨ ¨ ¨ ą r ´ 1u (for sufficiently large r). For clarity, we
occasionally refer to these as r-coloured permutations. A coloured permutation statistic is
a function st defined on the set of coloured permutations such that given a coloured
permutation σγ, if π is a permutation of the same length as σ and with the same rel-
ative order, then stpσγq “ stpπγq. Given coloured permutation statistics st1, . . . , stk, we
regard the tuple pst1, . . . , stkq as a coloured permutation statistic via pst1, . . . , stkqpaq “

pst1paq, . . . , stkpaqq. Given a coloured permutation a “ σγ “ σ
γ1
1 ¨ ¨ ¨ σ

γn
n , let coljpaq :“ |ti P

rns : γi “ ju|. The colour vector of a a is colpaq “ pcol0paq, . . . , colr´1paqq; this is a weak
composition of n. The functions col, des, and comaj are coloured permutation statistics.

Recall from [17, 22] that a (coloured) permutation statistic st is shuffle compatible if
for coloured permutations a and b on disjoint sets of symbols, the multiset ttstpcq : c P

a� buu only depends on stpaq, stpbq and the lengths of a and b. (Here, a� b denotes
the set of all coloured permutations obtained as shuffles of a and b.) Generalising [17,
22], we associate a shuffle algebra Aprq

st over Q to a shuffle-compatible coloured permu-
tation statistic st as follows. First, st defines an equivalence relation „st on r-coloured
permutations via a „st b if and only if a and b have the same length and stpaq “ stpbq;
we refer to this as st-equivalence. We write rasst to denote the st-equivalence class of a.
As a Q-vector space Aprq

st has a basis given by the st-equivalence classes of r-coloured
permutations. The multiplication is given by linearly extending the rule

rasst rbsst “
ÿ

cPa�b

rcsst,

where a and b are r-coloured permutations on disjoint sets of symbols. (Thanks to the
shuffle compatibility of st, this yields a well-defined multiplication on Aprq

st .)
The main shuffle algebra of interest to us is the one attached to pdes, comaj, colq. Let

p0, . . . , pr´1, x, t be commuting variables over Q; write p “ pp0, . . . , pr´1q. For a ring R,
let Rrrt˚ss denote the ring Rrrtss with multiplication given by the Hadamard product in t.

Theorem 3.1.

(a) The tuple of statistics pdes, comaj, colq is shuffle compatible.

(b) The linear map on Aprq

pdes,comaj,colq defined by

raspdes,comaj,colq ÞÑ

$

&

%

pcolpaqxcomajpaqtdespaq`1

p1´tqp1´xtq¨¨¨p1´x|a|tq
z|a|, if |a| ě 1

1
1´t , if |a| “ 0
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is an isomorphism from the (r-coloured) shuffle algebra of pdes, comaj, colq onto the sub-
algebra of Qrp0, p1, . . . , pr´1, z, xsrrt˚ss spanned by

"

1
1 ´ t

*

ď

"

pc0
0 ¨ ¨ ¨ pcr´1

r´1 xk tj`1

p1 ´ tqp1 ´ xtq ¨ ¨ ¨ p1 ´ xntq
zn

*

ně1, jPr0,ns, c0,...,cr´1Pr0,r´1s, kP

”

p
j`1

2 q,nj´p
j
2q

ı

.

While we omit the proof of the preceding theorem here, we should like to take this
opportunity to provide a brief overview of its key steps and ingredients. The coloured
descent set of a coloured permutation a “ σ

γ1
1 ¨ ¨ ¨ σ

γn
n is defined as

sDespaq “

!

pi, γiq : i P rn ´ 1s, γi ‰ γi`1 or pγi “ γi`1 and σi ą σi`1q

)

Y

!

pn, γnq

)

.

This coloured permutation statistic, which was introduced by Mantaci and Reutenauer
[21] while studying a coloured generalisation of Solomon’s descent algebra, is shuffle
compatible. Moreover, it refines the tuple pdes, comaj, colq. As a consequence, the alge-
bra Aprq

pdes,comaj,colq is naturally a quotient of Aprq

sDes.

Let xpjq
i for i “ 1, 2, . . . and j “ 0, 1, . . . , r ´ 1 be independent (commuting) variables.

We write xpjq “ pxpjq
1 , xpjq

2 , . . . q. The coloured quasisymmetric function attached to an r-
coloured permutation a “ σγ of length n is

Fapxp0q, . . . , xpr´1q
q “

ÿ

1ďi1ďi2ď¨¨¨ďin
jPDes˚paq ñ ijăij`1

xpγ1q

i1
xpγ2q

i2
¨ ¨ ¨ xpγnq

in ,

where Des˚
paq “ Despaqzt0u. This is a (homogeneous) formal power series of degree

n in the variables xp0q, . . . , xpr´1q. These functions were first introduced in [24]; see also
[19, 22, 23]. The space QSymprq spanned by all such coloured quasisymmetric functions
forms a Q-algebra. It turns out that QSymprq and Aprq

sDes are canonically isomorphic.
Our proof of Theorem 3.1 is based on a judicious choice of specialisations of coloured
quasisymmetric functions; cf. [22, §4.4]. Theorem 2.2 is a consequence of Theorem 3.1.

4 Applications to zeta functions

4.1 Ask, class-counting, and orbit-counting zeta functions

The main purpose of the present section is to recall four families of zeta functions associ-
ated with algebraic structures (Examples 4.1–4.6). These will feature in our applications
of Theorem 2.2 in Section 4.2. For further details, see [26, 27]. Rings will be assumed
to be commutative and unital. In order to maintain consistency with the literature, we
regard d ˆ e matrices over a ring R as homomorphisms Rd Ñ Re acting by right multi-
plication.
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Global ask zeta functions. Given a module M Ď MdˆepZq of integral matrices, for
each n ě 1, let Mn Ď MdˆepZ{nZq denote the reduction of M modulo n. The (global)
ask zeta function of M is the Dirichlet series ζask

M psq “
ř8

n“1 anpMqn´s, where anpMq P Q

denotes the average size of the kernel of matrices in Mn. By the Chinese remainder
theorem, ζask

M psq “
ś

p ζask
Mp

psq (Euler product), where the product is taken over all primes

p and the local factor at p is given by ζask
Mp

psq “
ř8

k“0 apkpMqp´ks, a power series in p´s.
Drawing upon deep results from p-adic integration and the theory of zeta functions of
algebraic structures, it is known that each ζask

Mp
psq is rational in p´s.

Local ask zeta functions. It is often advantageous to bypass global structures alto-
gether and directly study variants of the local factors from above. Let O be a compact
discrete valuation ring. Let P be the maximal ideal of O and let q denote the size of the
residue field O{P. Such rings O are precisely the valuation rings of non-Archimedean
local fields. Examples include the p-adic integers Zp (in which case O{P – Fp) and the
ring Fqrrzss of formal power series over Fq (in which case P “ zFqrrzss).

Given a module of matrices M Ď MdˆepOq, its associated (local) ask zeta function is the
formal power series Zask

M pYq “
ř8

k“0 αkpMqYk, where αkpMq denotes the average size of
the kernels within the reduction of M modulo Pk.

Example 4.1. Zask
MdˆepOq

pYq “
1´q´eY

p1´Yqp1´qd´eYq
; see [26, Prop. 1.5].

Example 4.2. Let O have characteristic distinct from 2. Let sodpOq be the module of

antisymmetric d ˆ d matrices over O. By [26, Prop. 5.11], Zask
sodpOq

pYq “
1´q1´dY

p1´Yqp1´qYq
.

Example 4.3. Let ndpOq be the module of strictly upper triangular d ˆ d matrices over O.

By [26, Prop. 5.15(i)], Zask
ndpOq

pYq “
p1´Yqd´1

p1´qYqd .

Class- and orbit-counting zeta functions. Let O be a compact discrete valuation ring as
above. Let G be a linear group scheme over O, with a given embedding into d ˆ d matri-
ces. The orbit-counting zeta function of G is the generating function Zoc

G pYq “
ř8

k“0 bkpGqYk,
where bkpGq denotes the number of orbits of the (finite) matrix group GpO{Pkq on its
natural module pO{Pkqd. The class-counting zeta function of G is the generating function
Zcc
G pYq “

ř8
k“0 ckpGqYk, where ckpGq denotes the number of conjugacy classes of GpO{Pkq.

Class-counting zeta functions go back to work of du Sautoy [15]. As shown in [26, 27],
subject to restrictions on the residue field size q of O, class- and orbit-counting zeta
functions of G are instances of ask zeta functions associated with modules of matrices
over O. When passing between ask and class-counting zeta functions, one often needs
to apply a transformation Y Ð qmY for a suitable integer m; see below for an example
and cf. Lemma 4.7.
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Example 4.4. Suppose that the residue field size q of O is odd. By exponentiation, the
free class-2-nilpotent Lie algebra on d generators over O gives rise to a group scheme
F2,d over O. We may view F2,d as an analogue of the free class-2-nilpotent group on d
generators. Lins [20, Cor. 1.5] showed that

Zcc
F2,d

pYq “
1 ´ qpd´1

2 qY
´

1 ´ qpd
2qY

¯´

1 ´ qpd
2q`1Y

¯ .

Looking back at Example 4.2, we observe that Zcc
F2,d

pYq “ Zask
sodpOq

pqpd
2qYq; this is no coin-

cidence, see [27, Ex. 7.3].

Example 4.5. Let Ud be the group scheme of upper unitriangular d ˆ d matrices over O.
Suppose that gcdpq, pd ´ 1q!q “ 1. By [26, Thm 1.7] (cf. [7, Prop. 4.12]) and Example 4.3,

we have Zoc
Ud

pYq “
p1´Yqd´1

p1´qYqd .

Graphs and graphical groups. Given a (finite, simple) graph Γ with distinct vertices
v1, . . . , vn and m edges, let MΓ be the module of antisymmetric n ˆ n matrices A “ raijs

such that aij “ 0 whenever vi and vj are non-adjacent. We write Zask
Γ pYq for Zask

MpΓq
pYq. As

shown in [30, Thm A], Zask
Γ pYq is a rational function in q and Y. In [30, §3.4], the graphical

group scheme GΓ associated with Γ is constructed; for an alternative but equivalent
construction, see [28, §1.1]. By [30, Prop. 3.9], Zcc

GΓ
pYq “ Zask

Γ pqmYq. Given graphs Γ1
and Γ2, let Γ1 _ Γ2 denote their join, obtained from the disjoint union of Γ1 and Γ2 by
adding edges connecting each vertex of Γ1 to each vertex of Γ2. Let Kn (resp. ∆n) denote
the complete (resp. edgeless) graph on n vertices.

Example 4.6. Consider Γ “ ∆n _ Kn`2. Then Γ has npn ` 2q `
`n`2

2

˘

“
p3n`1qpn`2q

2 edges.
It follows from [30, Thm 8.18] that

Zask
Γ pYq “

p1 ´ q´n´1Yqp1 ´ q´n´2Yq

p1 ´ Yqp1 ´ qYqp1 ´ q2Yq
.

Hadamard products and zeta functions. Let O be as above. Elaborating further on
what we wrote in the introduction, modules of matrices, (linear) group schemes, and
graphs all admit natural operations which correspond to taking Hadamard products of
zeta functions. In detail, given modules M Ď MdˆepOq and M1 Ď Md1ˆe1pOq, we regard
M ‘ M1 as a submodule of Mpd`d1qˆpe`e1qpOq, embedded diagonally. Then Zask

M‘M1pYq “

Zask
M pYq ˚Y Zask

M1 pYq. Similarly, given (linear) group schemes G and G1 over O, we obtain
Zcc
GˆG1pYq “ Zcc

G pYq ˚Y Zcc
G1pYq. Finally, given graphs Γ and Γ1, let Γ ‘ Γ1 denote their disjoint

union. Then Zask
Γ‘Γ1pYq “ Zask

Γ pYq ˚Y Zask
Γ1 pYq; moreover, GΓ‘Γ1 – GΓ ˆ GΓ1 .
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4.2 Applications

It turns out that each zeta function from Examples 4.1–4.6 can be expressed in terms
of the rational functions We

f ,αpX, Yq attached to labelled coloured configurations as in
Section 2. Omitting proofs, details of this are recorded in Table 1. This table is to be read
as follows: for each row and each compact discrete valuation ring O with residue field
size q (possibly subject to further conditions on O as in the examples above), the zeta
function ZpYq indicated in the leftmost column is obtained from the rational function in
the rightmost column via ZpYq “ Wε

f ,αpq, upqqYq. In Table 1, we write n for the sum of all
2n coloured permutations of the form 1ν1 ¨ ¨ ¨ nνn with νi P t0, iu. A “%” indicates that an
entry coincides with the one immediately above it. We note that Table 1 does not consti-
tute an exhaustive list of zeta functions expressible in terms of coloured configurations;
we refer to our upcoming paper [6] for further examples and applications.

Zeta function f α ε upXq Wε
f ,αpX, Yq

Zask
MdˆepOq

pYq 1 1 Ð ´X´d d ´ e 1 1´X´eY
p1´Yqp1´Xd´eYq

Zask
sodpOq

pYq, Zask
Mdˆpd´1qpOq

pYq % % 1 % 1´X1´dY
p1´Yqp1´XYq

Zcc
F2,d

pYq % % % Xpd
2q %

Zask
∆n_Kn`2

pYq 2 1, 2 Ð ´X´n´3 1 1 p1´X´n´1Yqp1´X´n´2Yq

p1´Yqp1´XYqp1´X2Yq

Zcc
G∆n_Kn`2

pYq % % % X
p3n`1qpn`2q

2 %

Zoc
Ud

pYq d ´ 1 1, . . . , d Ð ´X´1 0 X p1´X´1Yqd´1

p1´Yqd

Table 1: Examples of zeta functions from labelled coloured configurations

We now explain how, subject to a compatibility condition, Theorem 2.2 can be used
to explicitly compute Hadamard products of the zeta functions in Table 1. As explained
in Section 4.1, we can interpret such Hadamard products as zeta functions associated
with “products” of the objects under consideration. We first record an elementary fact.

Lemma 4.7. Let R be a commutative ring. Let ApYq “
ř8

k“0 akYk and BpYq “
ř8

k“0 bkYk be
formal power series over R. Let u, v P R. Then ApuYq ˚Y BpvYq “ pA ˚Y BqpuvYq.

The compatibility condition that we alluded to above is that we require entries in the
ε-column of Table 1 to agree for us to compute associated Hadamard products via Theo-
rem 2.2 and Lemma 4.7. Thus, suppose that p f , αq and pg, βq are coloured configurations
and let upXq and vpXq each be of the form ˘Xℓ for ℓ P Z. Then

Wε
f ,α

`

X, upXqY
˘

˚Y Wε
g,β

`

X, vpXqY
˘

“ pWε
f ,α ˚Y Wε

g,βq
`

X, upXqvpXqY
˘

.
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As explained in Section 2, by passing to equivalent labelled coloured configurations,
we may assume that f and g are strongly disjoint. Theorem 2.2 then allows us to explic-
itly compute Wε

f ,α ˚Y Wε
g,β. (Here it is crucial that a common value of ε is used in both

factors.) All that remains to obtain our zeta function is to apply the specialisation X Ð q.
To illustrate the scope of our method by means of, say, a group-theoretic application,

first note that for specific choices of d1, . . . , dr, a finite computation (using the algorithm
in [30, §6], implemented in the software package Zeta [29]) can be used to determine
Zcc
F2,d1

ˆ¨¨¨ˆF2,dr
pYq. Our results here go substantially further. Indeed, for any fixed r, an

explicit finite computation produces a single formula for Zcc
F2,d1

ˆ¨¨¨ˆF2,dr
pYq “ Zcc

F2,d1
pYq ˚Y

¨ ¨ ¨ ˚Y Zcc
F2,dr

pYq as a symbolic expression involving variables d1, . . . , dr.

Example 4.8. By combining Example 2.3 and Example 4.4, we find that Zcc
F2,dˆF2,d1

pYq “

W
`

q, qpd
2q`pd1

2 qY
˘

, where

WpX, Yq “
1 ` p1 ´ X´d ´ X´d1

qXY ` pX´d´d1

´ X´d ´ X´d1

qX2Y ` X´d´d1

X3Y2

p1 ´ Yqp1 ´ XYqp1 ´ X2Yq
.

In the same spirit, using the data from Table 1, we can e.g. symbolically compute the
orbit-counting zeta function of Ud1 ˆ ¨ ¨ ¨ ˆ Udr and the ask zeta function of Md1ˆe1pOq ‘

¨ ¨ ¨ ‘ MdrˆerpOq when d1 ´ e1 “ ¨ ¨ ¨ “ dr ´ er, all for fixed r but symbolic variables
d1, . . . , dr and e1, . . . , er. In particular, the latter case provides an explicit description of
the ask zeta function of Md1pOq ‘ ¨ ¨ ¨ ‘ MdrpOq in terms of coloured permutation statis-
tics; cf. [30, Question 10.4(a)–(b)]. Such a description was previously only known for
d1 “ ¨ ¨ ¨ “ dr; see [30, Prop. 10.3].

We conclude by noting that, to the best of our knowledge, the previously mentioned
result [30, Prop. 10.3] and its close relative [26, Cor. 5.17] (both pertaining to direct pow-
ers of MdpOq) were the only examples of Hadamard products of ask (as well as class- and
orbit-counting) zeta functions expressed in terms of (coloured) permutation statistics. In
the aforementioned results in the literature, the proofs rely on work of Brenti [3]. These
proofs are based on the coincidence of the rational generating functions in question with
those attached to so-called q-Eulerian polynomials of signed permutations. This pre-
ceded more recent machinery surrounding shuffle compatibility. This earlier work is
now explained as part of the framework presented here.
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