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Abstract. Eulerian idempotents of types A and B generate representations with topolog-
ical interpretations, as the cohomology of configuration spaces of types A and B. We
provide an analogous cohomological interpretation for the representations generated
by idempotents in the peak algebra, called the peak representations. We describe the peak
representations as sums of Thrall’s higher Lie characters, give Hilbert series and branching
rule recursions for them, and discuss connections to Jordan algebras.
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1 Introduction

This abstract concerns the cohomology H∗X = H∗(X, k) with coefficients in a field k for
three different topological configuration spaces X = Xn, Yn, Zn having large symmetry
groups W. For each, the (ungraded) cohomology carries the regular representation of W,
that is, H∗X ∼= k W. Our goal is to study and exploit the following surprising fact: for k
of characteristic zero, the decomposition into HiX matches a combinatorial direct sum
decomposition for certain complete families {Ei} of orthogonal idempotents in k W:

H∗X =
⊕

i

HiX ∼=
⊕

i

(k W)Ei = k W. (1.1)

The first two spaces Xn, Yn are well-studied: Xn is the ordered configuration space of n
points in R3 while Yn is the Z2-orbit configuration spaces for the Z2-action via x 7→ − x:

Xn := Confn R3 = {x ∈ (R3)n : xi ̸= xj for 1 ≤ i < j ≤ n},
Yn := ConfZ2

n R3 = {x ∈ (R3)n : xi ̸= ±xj for 1 ≤ i < j ≤ n, and xi ̸= 0 for 1 ≤ i ≤ n}

Note that Xn has an action of the symmetric group W = Sn permuting the coordinates
of x, while Yn carries an action of the hyperoctahedral group W = S±n by permuting and
negating coordinates. Both spaces have cohomology concentrated only in even degrees
and total cohomology carrying the regular representation k W for W = Sn,S±n .
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The idempotent decompositions of kSn and kS±n will come from the type A and B
Eulerian idempotents {ESn

k }k=0,1,...,n−1 in kSn and {ES±n
k }k=0,1,...,n in kS±n , defined in work

of Reutenauer [13], Gerstenhaber–Schack [10], and F. Bergeron and N. Bergeron [4].
The Eulerian idempotents lie within the subalgebras of the group algebras k W known

as Solomon’s descent algebra Sol(W), meaning that when expressed as ∑w∈W cww, their
coefficients cw depend only upon the Coxeter group descent set of w. Work of Hanlon [11],
Sundaram-Welker [16] and Brauner [6] gives a correspondence between these objects:

H2kXn ∼= (kSn) ESn
n−1−k for k = 0, 1, . . . , n− 1, (1.2)

H2kYn ∼=
(
kS±n

)
ES±n

n−k for k = 0, 1, . . . , n. (1.3)

In this abstract, we use (1.2) and (1.3) as the starting point to give a third correspon-
dence of the form (1.1) for the space Zn := Yn/ Zn

2
∼= Confn(RP2×(0, ∞)), where Zn

2 is
the normal subgroup of S±n consisting of sign changes; thus Sn ∼= S±n / Zn

2 acts on Zn.
The idempotents {EPn

k } in this new correspondence lie inside the peak algebra Pn,
which is the further subalgebra of Sol(Sn) inside kSn whose elements ∑w∈W cww have
coefficients cw depending only upon the peak set of w = (w0 := 0, w1, . . . , wn)

Peak(w) := {i : 1 ≤ i ≤ n− 1 and wi−1 < wi > wi+1}.
Our main contribution is to relate the peak representations (kSn) EPn

n−k to the cohomology
ring H∗Zn, and to explicitly describe these families of representations in terms of Thrall’s
famed higher Lie characters Lieλ for λ an integer partition of n.

Theorem 1.1. Let k be a field of characteristic zero.

(i) The peak idempotent EPn
k in kSn vanishes unless k ≡ n mod 2.

(ii) The cohomology HiZn = Hi(Zn, k) vanishes unless i ≡ 0 mod 4.

(iii) As a Sn-representation, the total cohomology carries the regular representation:

H∗Zn ∼= kSn.

(iv) For 0 ≤ k ≤ n with k even, one has Sn-representation isomorphisms

(kSn) EPn
n−k
∼= H2kZn ∼=

⊕
λ⊢n:

odd(λ)=n−k

Lieλ,

where odd(λ) is the number of odd parts of λ.

In fact, we refine Theorem 1.1 (see Theorems 4.4 and 4.6) by introducing several
(compatible) decompositions of H∗Zn and a family of primitive idempotents in Pn.

Although Pn is a well-known subalgebra of Sol(Sn), it is in general difficult to directly
relate the two algebras. Our work offers a step in this direction. The novelty of our
approach is to avoid computations in the algebras themselves, and instead develop and
utilize concrete combinatorial descriptions of the rings H∗Xn, H∗Yn, and H∗Zn.
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The remainder of the abstract proceeds as follows. Section 2 gives necessary back-
ground on the Type A and B stories. We then develop properties of H∗Yn in Section
3, which will be instrumental in proving our main results on the peak representations
in Section 4. In Section 5 we provide generating function formulae and branching rule
recursions for the peak representations, and relate this story to the free Jordan algebra.

2 Background

We review here in more detail the spaces Xn, Yn, their cohomology rings, and their
relationship to the Eulerian idempotents and Lie characters Lieλ discussed in Section 1.

2.1 The (associated graded) Varchenko-Gelfand ring

The cohomology rings Xn := H∗Xn and Yn := H∗Yn are closely related to the reflection
hyperplane arrangements AW ⊂ V = Rn associated to the groups W = Sn,S±n :

ASn = {xi = xj}1≤i<j≤n AS±n
= {xi = 0}1≤i≤n ⊔ {xi = ±xj}1≤i<j≤n.

In particular, Moseley [12] proved there are algebra isomorphisms

Xn ∼= VG(ASn) Yn ∼= VG(AS±n
),

where VG(A) is the (associated graded) Varchenko-Gelfand ring, defined for any real hyper-
plane arrangement A ⊂ Rn as the quotient of k[ui]Hi∈A by an ideal1

JA = ⟨u2
i ,

c

∑
j=1

ϵ(C, ij) · ui1ui2 · · · ûij · · · uic−1uic for all C ⊂ A⟩.

Here C = (C+, C−) is an oriented matroid signed circuit of A, with ϵ(C, ij) = ±1, depend-
ing on whether ij lies in C+ or C−.

Example 2.1. When A = ASn , work of Arnol’d [2] and Cohen [8] shows that Xn has
presentation given by

Xn ∼= VG(ASn) = k[uij]1≤i<j≤n/⟨u2
ij, uijuik − uijujk + uikujk⟩.

Barcelo [3] constructed an elegant non-broken circuit monomial basis for Xn, obtained by
taking products with at most one element from each set Ui below:

U1 = {u12}, U2 = {u13, u23}, · · · , Un−1 = {u1n, u2n, · · · , u(n−1),n}.
1In fact, one can take coefficients in Z rather than k. However, in what follows, we will want k to be a

field with characteristic not dividing 2.
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In [6], the second author showed that VG(A) admits a decomposition by intersection
subspaces (i.e. flats) in A. The component of VG(A)X indexed by X is the Z-span of all
monomials {ui1 · · · uiℓ} for which Hi1 ∩ · · · ∩ Hiℓ = X.

In the case of a reflection arrangement AW , we can group flats by their W-orbits [X],
which gives a coarser decomposition of VG(AW) =

⊕ VG(AW)[X]. The flats and flat
orbits in ASn and AS±n

have elegant (and useful!) combinatorial descriptions.
Famously, the flats of ASn biject with set partitions of [n]. This isomorphism identifies

a flat X with the set partition πX = {B1, · · · , Bk} where i and j are in the same block Bℓ if
and only if xi = xj in X. The Sn-orbits of these flats biject with integer partitions of n:
the orbit of πX corresponds to the partition λX = {|B1|, · · · , |Bk|}.

Similarly, the flats in AS±n
can be identified with a set partition on a subset S of

[n]± := {1, 2, · · · , n, 1, 2, · · · n}, where S does not contain both i and i. Given a flat X,
identify i with −xi and let τX = {C1, · · ·Ck} where for i, j ∈ [n], indices i and j (resp.
i and j) appear in the same block Cℓ if and only if xi = xj ̸= 0 (resp. if and only if
xi = −xj ̸= 0) in X. Note that two set partitions related by i 7→ ī correspond to the same
flat. The S±n orbit of τX is indexed by a partition µX = {|Ci|, · · · , |Ck|} of 0 ≤ m ≤ n.

We write X (n)
λX

:= VG(ASn)[πX ] and Y (n)
µX := VG(AS±n

)[τX ], giving the decompositions

Xn =
⊕
λ⊢n

X (n)
λ Yn =

⊕
µ⊢0≤m≤n

Y (n)
µ .

2.2 The Eulerian idempotents and higher Lie characters

The idempotents {ESn
k } and {ES±n

k } from Section 1 can be defined via the formula in [6]:

r

∑
k=0

tkEW
k =

1
|W| ∑

w∈W

(
des(w)

∏
i=1

(t− ei)
r−des(w)

∏
i=1

(t + ei)

)
· w,

which recovers work of Garsia–Reutenauer [9] for W = Sn and Bergeron–Bergeron [4]
for W = S±n . Here, r is the rank of AW (r = n− 1 for W = Sn and r = n for W = S±n )
and the ei are the exponents of W (ei = i for W = Sn and ei = 2i− 1 for W = S±n ). The
descent number, des(w) is the number of simple reflections s of W with ℓ(ws) < ℓ(w).

The EW
k have a refinement due to Bergeron–Bergeron–Howlett–Taylor [5], who intro-

duced families of complete, primitive orthogonal idempotents in Sol(W) for any finite
Coxeter group W. These idempotents, which we will call the BBHT idempotents, are in-
dexed by W-flat orbits. We omit the technical definitions, but note that by the discussion
in §2.1, for W = Sn,S±n they can be indexed as {ESn

λ : λ ⊢ n} and {ES±n
µ : µ ⊢ m, m ≤ n}.

To recover the {ESn
k } and {ES±n

k }, group {ESn
λ } and {ES±n

µ } by partition length ℓ:

ESn
k = ∑

λ: ℓ(λ)=k
ESn

λ ES±n
k = ∑

µ: ℓ(µ)=k
ES±n

µ . (2.1)
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We can also refine the isomorphisms in (1.2) and (1.3) using the BBHT idempotents:

Theorem 2.2 (Brauner, [6]). There are Sn and S±n representation isomorphisms

X (n)
λ
∼= (kSn) ESn

λ Y (n)
µ
∼=
(
kS±n

)
ES±n

µ .

In fact, there is more to say in the case of W = Sn, relating to the higher Lie representa-
tions {Lieλ} of Thrall [17]. Let Cλ be the conjugacy class of Sn indexed by the partition
λ = (1m1 , 2m2 , · · · nmn). The centralizer Zλ of an element of Cλ has isomorphism type

Zλ
∼=

n

∏
j=1

Smj [Zj],

where Zj is the cyclic group of order j, and Smj [Zj] is the wreath product. Specifically,
the action of Smj in this wreath product swaps the mj blocks of λ of size j.

We will be interested in a linear character ωλ on Zλ obtained from extending faithful
characters on each Zj to Zλ, where ωλ restricts trivially on the wreath factors Smj of Zλ.

Write ↑G
H to be the representation induction from a subgroup H of G to G.

Definition 2.3. Give a partition λ ⊢ n, define Lieλ := ωλ ↑Sn
Zλ

.

Thrall proved that kSn ∼=
⊕

λ⊢n Lieλ. A beautiful result of Hanlon [11] then shows
that Lieλ

∼= (kSn)ESn
λ . Using (2.1), we can thus conclude

(kSn) ESn
n−1−k

∼=
⊕
λ⊢n:

ℓ(λ)=n−k

Lieλ
∼= H2kXn.

Example 2.4. When λ = (n), the representation Lien := Lie(n) is isomorphic to the
multilinear component of the free Lie algebra, defined and generalized in §5.1.

3 Presentations, Filtrations, and Decompositions of H∗Yn

Our first task is to study the ring Yn := H∗Yn in greater detail. It will be important
for the remainder of this section to assume that the field k has characteristic larger
than n, so that 2 ∈ k× and k[S±n ] is semisimple. This allows us to make an invertible
change-of-variables that diagonalizes the action of the normal subgroup Zn

2 within S±n .
The presentation of Yn ∼= VG(AS±n

) was first given by Xicotencatl [18]; it is isomorphic
to k[u+

ij , u−ij , ui]/JS±n for 1 ≤ i < j ≤ n, with generators corresponding to

u+
ij ←→ {xi = xj} u−ij ←→ {xi = −xj} ui ←→ {xi = 0}

respectively. The generating relations for JS±n are given in Table 1.
We will introduce a new basis for Yn, a filtration using that basis, and a corresponding

associated graded ring. Along the way, we will see several useful decompositions of Yn.
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Definition 3.1. For 1 ≤ i < j ≤ n, define an isomorphism of graded k-algebras B by

ui 7−→ ui vij 7−→ u+
ij + u−ij wij 7−→ u+

ij − u−ij

with inverse given by B−1(ui) = ui,B−1(u+
ij ) =

1
2(vij + wij),B−1(u−ij ) =

1
2(vij − wij).

We wish to rewrite the presentation Yn := k[u+
ij , u−ij , ui]/JS±n in terms of these new

variables vij, wij, using a Gröbner basis argument. Introduce a lexicographic monomial
ordering ≺ on k[vij, wij, ui], in which the variables ui, vij, wij are ordered as follows:

u1 < u2 < · · · un < v12 < w12 < v13 < w13 < · · · < v(n−1)1 < w(n−1)n. (3.1)

Theorem 3.2. The isomorphism B : k[vij, wij, ui] −→ k[u+
ij , u−ij , ui] induces a graded k-algebra

isomorphism, where I is generated by the relations G listed in Table 1 below:

k[vij, wij, ui]/ I
∼−→ k[u+

ij , u−ij , ui]/JS±n =: Yn,

Moreover, G gives a Gröbner basis for the ideal I with respect to ≺, in which the standard
monomial k-basis for the quotient k[vij, wij, ui]/ I is the set of monomials V obtained from taking
products with at most one element from each of these sets Vi:

V1 = {u1}, V2 = {u2, v12, w12}, · · · , Vn = {un, v1n, w1n, · · · , v(n−1)n, w(n−1)n}.

We make two observations about the S±n action on Yn. First, elements of Zn
2 ⊂ S±n

scale all of ui, vij, wij via ±1; thus Theorem 3.2 will allow us to construct a monomial basis
for H∗Zn ∼= (Yn)Zn

2 in §4. Second, the generators segregate into two S±n -orbits: {ui}1≤i≤n
and {vij, wij}1≤i<j≤n. This leads to a helpful filtration, as follows.

For q ∈ k[vij, wij, ui], let deg(q) be the polynomial degree of q, degV (q) to be the
degree of q in the vij and wij variables, and degu(q) be the degree in the ui variables. Our
key insight is that Yn admits a filtration by degu. In particular, define the ideal

P(i) :={q ∈ Yn ⊂ k[ui, vij, wij] : degu(q) ≥ i}.

For example, when n = 2 the ideal P(1) is the k-span of {u1, u2, u1v12, u1w12, u1u2}.

Proposition 3.3. There are S±n -stable ascending filtrations on Yn given by

P(n) ⊂ P(n−1) ⊂ · · · ⊂ P(1) ⊂ P(0).

The associated graded ring Yn =
⊕n

i=0 P(i)/P(i+1) has presentation k[vij, wij, ui]/gr(I) for
1 ≤ i < j ≤ n, where the relations generating gr(I) are given in Table 1.

The motivation for introducing and studying the associated graded ring Yn is that
in our context (i.e. kS±n being a semisimple algebra), we have Yn ∼= Yn as S±n -modules.
Hence, it suffices to study the basis and representations on Yn.

We will see that Yn has several useful decompositions that make studying the repre-
sentations on Yn (and eventually H∗Zn) far more tractable.
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Relations for JS±n Relations for I Relations for gr(I)

u2
i u2

i u2
i

uiu+
ij − uiu−ij − u+

ij u−ij vijwij vijwij

uiuj − uiu−ij − uju−ij uiwij − ujvij uiwij − ujvij

(u+
ij )

2 v2
ij − 2uiwij v2

ij

(u−ij )
2 w2

ij + 2uiwij w2
ij

uiuj − uiu−ij − uju−ij uivij − 2uiuj − ujwij uivij − ujwij

u+
ij u+

jk − u+
ij u+

ik − u+
ik u+

jk vijwjk − wijwik − vikvjk vijwjk − wijwik − vikvjk

u−ij u+
jk − u−ij u−ik − u−ik u+

jk wijwjk − vijwik − wikwjk wijwjk − vijwik − wikwjk

−u−ij u−jk + u−ij u+
ik − u+

ik u−jk vijvjk − vijvik − vikwjk vijvjk − vijvik − vikwjk

−u+
ij u−jk + u+

ij u−ik − u−ik u−jk wijvjk − wijvik − wikvjk wijvjk − wijvik − wikvjk

Table 1: Generating relations for the ideals JSn , I and gr(I).

First, one can show that the flat orbit decomposition from §2.1 persists in Yn; we will

abuse notation and write Y (n)
µ instead of Yµ

(n)
since they are isomorphic.

The second useful decomposition is the following bi-grading:

Y (n)
k,ℓ := spank{q ∈ Yn : deg(q) = k degV (q) = ℓ}.

In fact, this bi-grading can be refined to a third decomposition by signed partitions, which
are pairs of partitions (λ+, λ−) such that |λ+|+ |λ−| = n.

Definition 3.4. Given a monomial in q ∈ Q[ui, vij, wij], associate to q a signed partition
(λ+

(q), λ−
(q)) as follows:

1. Construct a graph G(q) with vertex set [n] = {1, 2, · · · , n} by drawing an edge
between i and j if vij or wij occurs in q, and drawing a loop at i if ui occurs in q;

2. Let G1 = (E1, V1), · · · ,Gk = (Ek, Vk) be the connected components of G(q). Then

λ+
(q) := {|Vℓ| : Gℓ has no loops} λ−

(q) := {|Vℓ| : Gℓ has loops}.

Proposition 3.5. There is a decomposition of Yn by signed partitions Yn =
⊕

(λ+,λ−) Y
(n)
(λ+,λ−),

where
Y (n)
(λ+,λ−) := spank{monomials q ∈ Yn : (λ+

(q), λ−
(q)) = (λ+, λ−)}.
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This decomposition is compatible with the other decompositions of Yn, in the sense that:

Y (n)
µ =

⊕
(λ+,λ−): λ+=µ

Y (n)
(λ+,λ−) Y (n)

k,ℓ =
⊕

(λ+,λ−): ℓ(λ+)=n−k
ℓ(λ+)+ℓ(λ−)=n−ℓ

Y (n)
(λ+,λ−)

For example, suppose n = 8 and q = w12 · u5 · v56 · u7 · v24. Then q is in the bi-graded
piece Y (8)

5,3 and we have λ+
(q) = {3, 1, 1} and λ−

(q) = {2, 1}. Thus q ∈ Y (8)
((3,1,1),(2,1)) ⊂ Y

(8)
(3,1,1).

Theorem 3.6. There is a well-defined, Sn-equivariant surjection of k-vector spaces

γ : Yn −→ Xn = k[uij]1≤i<j≤n/⟨u2
ij, uijuik − uijujk + uikujk⟩

Y (n)
(λ+,λ−) 7−→ X

(n)
(λ+∪λ−),

defined by sending γ(ui) = 1, γ(wij) = uij γ(vij) = uij.

Proof idea. The key observation is that the relations uiwij − ujvij and uivij − ujwij in gr(I)
mean that one can give a presentation of Yn as a quotient of a subring of k[vij, wij, ui], by
an ideal Ĩ ⊂ gr(I) that omits the relation u2

i . From this, one can define a surjection of
vector spaces; note however that γ cannot be extended to a map of algebras.

4 Main Results

At last, we are ready to analyze the peak representations. Our investigations began from
an observation of Aguiar, Bergeron and Nyman [1] relating the descent algebras Sol(Sn)
and Sol(S±n ) to the peak algebra Pn.

Recall that one can express the hyperoctahedral group of all signed permutations as
S±n = Sn ⋉ Zn

2 where Zn
2 is the normal subgroup performing arbitrary sign changes in

the coordinates. The quotient map S±n ↠ S±n / Zn
2
∼= Sn of groups, which forgets the

signs in a signed permutation, gives rise to a surjective k-algebra map φ : kS±n ↠ kSn.
In [1], it was shown that the peak subalgebra Pn is exactly the image under φ of Sol(S±n ),

that is, φ restricts to an algebra surjection Sol(S±n )
φ
↠ Pn.

As a consequence, one can define a family of peak idempotents inside Pn ⊂ kSn via

EPn
k := φ(ES±n

k ) for k = 0, 1, · · · , n EPn
µ := φ(ES±n

µ ) for µ ⊢ m ≤ n.

Both families inherit from {ES±n
k } and {ES±n

µ } the property of being a complete system of
orthogonal idempotents in kSn, and the {EPn

µ } are also primitive if nonzero. Note that
some of the EPn

k and EPn
µ will be zero, which we characterize in Theorems 1.1 and 4.6.

By construction, one recovers EPn
k from the EPn

µ by summing over all µ of length k.
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Our goal is to relate the peak idempotents to the ring Zn := H∗Zn, where

Zn := Yn/ Zn
2 = Confn(

(
R3 \{0}

)
/ Z2) = Confn(RP2×(0, ∞))

is the configuration space of n ordered points within the quotient R3 \{0} under the
Z2-action via x 7→ − x, so that

(
R3 \{0}

)
/ Z2

∼= RP2×(0, ∞).
Note that (Yn)Zn

2 ∼= Zn. The filtration, bigrading, and finer decompositions (by flat
orbits and signed partitions) on Yn from Section 3 persist when one takes Zn

2 -fixed spaces,
giving a bigraded Sn-representation on an associated graded ring Zn:

Z (n)
k,ℓ := (Y (n)

k,ℓ )
Zn

2 , Z (n)
µ := (Y (n)

µ )Zn
2 , Z (n)

(λ+,λ−) := (Y (n)
(λ+,λ−))

Zn
2 .

We first construct monomial a basis for Zn, using the fact that by Theorem 3.2, the
basis V of Yn diagonalizes the action of the normal subgroup Zn

2 ≤ S±n on Yn.

Definition 4.1. For 1 ≤ i < j < k ≤ n, let I1 := {uiwij}, I2 := {wijwik}, I3 := {vijwjk}.
Let Ṽ be the monomials obtained from products in I j for j = 1, 2, 3 that are also in V .

Theorem 4.2. The set Ṽ is a basis for Zn and Zn that is compatible with the decomposition by
signed partitions: Zn =

⊕Z (n)
(λ+,λ−).

Proof idea. We construct a bijection from Ṽ to the monomial basis of Xn from Example 2.1.
This involves defining a “pairing lemma” to group quadratic terms appearing in q ∈ Ṽ
and then mapping: uiwij to uij, wijwik to uijuik, and vijwjk to uijujk.

Example 4.3. The basis for Z (4)
4,2 is {(u1w12)(u3w34), (u1w13)(u2w24), (u1w14)(u2w23)}.

Given a partition λ of n, recall that ℓ(λ) is its number of parts and |λ| is its size. Let
Odd(λ) (resp. Even(λ)) be the partition obtained by taking only the odd (resp. even)
parts of λ. We call λ an odd partition if Odd(λ) = λ and an even partition if Even(λ) = λ.
Write odd(λ) = ℓ(Odd(λ)) and even(λ) = ℓ(Even(λ)).

Theorem 4.4. The space Z (n)
(λ+,λ−) vanishes unless λ+ is an odd partition and λ− is an even

partition, while Z (n)
µ vanishes unless µ is an odd partition and n− |µ| is even.

Moreover, the map γ restricts to an Sn-equivariant vector-space isomorphism γ : Zn −→ Xn:

γ(Z (n)
(λ+,λ−)) = X

(n)
(λ+∪λ−) γ−1(X (n)

λ ) = Z (n)
(Odd(λ),Even(λ)).

Thus, for non-vanishing Z (n)
(λ+,λ−), Z

(n)
µ , and Z (n)

2k,ℓ, there are Sn-representation isomorphisms

Z (n)
(λ+,λ−)

∼= Lie(λ+∪λ−), Z (n)
µ
∼=

⊕
λ: Odd(λ)=µ

Lieλ, Z (n)
2k,ℓ
∼=

⊕
λ:ℓ(λ)=n−ℓ

odd(λ)=n−2k

Lieλ .

Example 4.5. When n = 4, the non-vanishing pieces Z (4)
µ are as follows:

Z (4)
∅
∼= Lie(2,2)⊕Lie(4) Z (4)

(1,1)
∼= Lie(2,1,1) Z (4)

(3,1)
∼= Lie(3,1) Z (4)

(1,1,1,1)
∼= Lie(1,1,1,1) .
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The non-vanishing bi-graded pieces Z (4)
2k,ℓ are

Z (4)
0,0
∼= Lie(1,1,1,1) Z (4)

2,1
∼= Lie(2,1,1) Z (4)

2,2
∼= Lie(3,1) Z (4)

4,2
∼= Lie(2,2) Z (4)

4,3
∼= Lie(4) .

In fact, we now have all the tools necessary to provide a cohomological interpretation
of the Sn-representations generated by the Peak idempotents, by analyzing the Zn

2 fixed
spaces of Theorem 2.2 and applying Theorem 4.4.

Theorem 4.6. The idempotent EPn
µ does not vanish if and only if µ is an odd partition (including

µ = ∅) and n− |µ| is even. In this case, there are Sn-representation isomorphisms

(kSn)EPn
µ
∼= Z (n)

µ
∼=

⊕
λ: Odd(λ)=µ

Lieλ .

Note that combining Proposition 3.5 with Theorems 4.4 and 4.6 implies Theorem 1.1.

5 Hilbert series and the free Jordan algebra

Having established the connection between the peak algebra and the ring Zn, we now
develop enumerative and recursive properties of the latter.

Let Λ denote the ring of symmetric functions (of bounded degree, in infinitely many
variables). It has a Z-algebra isomorphism known as the Frobenius characteristic map
ch : ⊕n≥0Rep(Sn) → Λ, where Rep(Sn) are the virtual characters of Sn. We will study
the Frobenius characteristic of Z (n)

2k,ℓ, using the fact that Z (n)
2k+1,ℓ = 0 by Theorem 1.1.

Definition 5.1. Write ΛZ[t,q] to be the ring Λ with coefficients in Z[t, q] and define

Mn(t, q) := ∑
k,ℓ

dim
(
Z (n)

2k,ℓ

)
tkqℓ ∈ Z[t, q], M(n)(t, q) := ∑

k,ℓ
ch
(
Z (n)

2k,ℓ

)
tkqℓ ∈ ΛZ[t,q].

For w ∈ Sn let even(w), odd(w) denote the number of even-sized and odd-sized cycles
of w, and cyc(w) the number of cycles of w.

Theorem 5.2. Write Lλ := ch(Lieλ). Then one can rewrite Mn(t, q) andM(n)(t, q) as follows:

Mn(t, q) = ∑
w∈Sn

t
n−odd(w)

2 qn−cyc(w), M(n)(t, q) = ∑
λ⊢n

Lλ · t
|λ|−odd(λ)

2 q|λ|−ℓ(λ).

Using Theorem 5.2, we manipulate the symmetric functions in M(n)(t, q) to give a
branching rule recurrence for the bi-graded pieces Z (n)

2k,ℓ. Let ↑ denote representation
induction from Sn to Sn+1 and ↓ denote representation restriction from Sn to Sn−1.
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Theorem 5.3. The restriction of Z (n)
2k,j from an Sn to an Sn−1-module is given by

Z (n)
2k,ℓ ↓ = Z

(n−1)
2k,ℓ +Z (n−2)

2(k−1),ℓ−1 ↑+
(
Z (n−2)

2(k−1),ℓ−2 ↑
)
∗ χ(n−2,1),

where ∗ is the Kronecker product and χ(n−2,1) is the irreducible reflection representation of Sn−1.

Theorem 5.3 implies a recursive formula for Mn(t, q) with interesting specializations:

Mn(1, q) = (1 + q)(1 + 2q) · · · (1 + (n− 1)q), (5.1)
Mn(t, 1) = (1 + (n− 1)q) ·Mn−1(1, q), (5.2)

where (5.1) is the generating function for the Stirling numbers of the first kind, and (5.2)
describes the Sheffer polynomials [15] counting permutations w according to odd(w).

5.1 The space of simple Jordan elements

Finally, we mention an interesting connection between Zn and the multilinear part of the
space of simple Jordan elements within the free associative algebra k⟨x⟩ = k⟨x1, . . . , xn⟩.

Consider a deformation of the Lie bracket on k⟨x⟩ by α ∈ C: [x, y]α := xy− αyx. Let
Jα be the smallest k-subspace of k⟨x⟩ containing the generators x and closed under [·, ·]α.

For example, J1 ⊂ k⟨x⟩ is the free Lie algebra. Define Vn(α) ⊂ Jα to be the k-subspace
spanned by these multilinear bracketings of homogeneous degree n for w ∈ Sn:

[[· · · [xw(1), xw(2)]α, xw(3)]α, · · · ]α, xw(n)]α

Then Vn(1) ∼= Lien is the multilinear component of the free Lie algebra, while Vn(−1) is
the multilinear part of the space of simple Jordan elements. The following was proved by
Robbins in [14, §6, Thm. 7] and later in [7, Thm 2.1] by Calderbank–Hanlon–Sundaram:

Vn(−1) ∼=
⊕
λ⊢n

odd(λ)=ℓ(λ)

Lieλ . (5.3)

We combine Theorem 4.4 and (5.3), to give a cohomological interpretation for Vn(−1).

Corollary 5.4. The space Vn(−1) is isomorphic as an Sn-representation to
⊕

k Z
(n)
2k,2k.
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