Séminaire Lotharingien de Combinatoire **91B** (2024) Article #13, 12 pp.

Configuration spaces and peak representations

Marcelo Aguiar¹, Sarah Brauner^{*2}, and Vic Reiner^{†3}

¹ Department of Mathematics, Cornell University

² Département de mathématiques, Université du Québec à Montréal

³Department of Mathematics, University of Minnesota - Twin Cities

Abstract. *Eulerian* idempotents of types *A* and *B* generate representations with topological interpretations, as the cohomology of configuration spaces of types *A* and *B*. We provide an analogous cohomological interpretation for the representations generated by idempotents in the *peak algebra*, called the *peak representations*. We describe the peak representations as sums of *Thrall's higher Lie characters*, give Hilbert series and branching rule recursions for them, and discuss connections to Jordan algebras.

Keywords: Peak algebra, configuration spaces, Solomon's descent algebra, higher lie characters, hyperplane arrangements, Varchenko-Gelfand ring, Type *A*, Type *B*

1 Introduction

This abstract concerns the cohomology $H^*X = H^*(X, \mathbf{k})$ with coefficients in a field \mathbf{k} for three different topological configuration spaces $X = X_n$, Y_n , Z_n having large symmetry groups W. For each, the (ungraded) cohomology carries the regular representation of W, that is, $H^*X \cong \mathbf{k} W$. Our goal is to study and exploit the following surprising fact: for \mathbf{k} of characteristic zero, the decomposition into H^iX matches a combinatorial direct sum decomposition for certain complete families $\{E_i\}$ of *orthogonal idempotents* in $\mathbf{k} W$:

$$H^*X = \bigoplus_i H^iX \cong \bigoplus_i (\mathbf{k} W)E_i = \mathbf{k} W.$$
 (1.1)

The first two spaces X_n , Y_n are well-studied: X_n is the *ordered configuration space* of n points in \mathbb{R}^3 while Y_n is the \mathbb{Z}_2 -orbit configuration spaces for the \mathbb{Z}_2 -action via $\mathbf{x} \mapsto -\mathbf{x}$:

$$X_n := \operatorname{Conf}_n \mathbb{R}^3 = \{ \mathbf{x} \in (\mathbb{R}^3)^n : x_i \neq x_j \text{ for } 1 \le i < j \le n \},$$

$$Y_n := \operatorname{Conf}_n^{\mathbb{Z}_2} \mathbb{R}^3 = \{ \mathbf{x} \in (\mathbb{R}^3)^n : x_i \neq \pm x_j \text{ for } 1 \le i < j \le n, \text{ and } x_i \neq 0 \text{ for } 1 \le i \le n \}$$

Note that X_n has an action of the *symmetric group* $W = \mathfrak{S}_n$ permuting the coordinates of \mathbf{x} , while Y_n carries an action of the *hyperoctahedral group* $W = \mathfrak{S}_n^{\pm}$ by permuting and negating coordinates. Both spaces have cohomology concentrated only in even degrees and total cohomology carrying the regular representation $\mathbf{k} W$ for $W = \mathfrak{S}_n, \mathfrak{S}_n^{\pm}$.

^{*}sarahbrauner@gmail.com. Brauner is supported by the NSF MSPRF DMS 2303060.

[†]Reiner is partially supported by NSF grant DMS 2053288.

The idempotent decompositions of $\mathbf{k} \mathfrak{S}_n$ and $\mathbf{k} \mathfrak{S}_n^{\pm}$ will come from the *type A and B Eulerian idempotents* $\{E_k^{\mathfrak{S}_n}\}_{k=0,1,\dots,n-1}$ in $\mathbf{k} \mathfrak{S}_n$ and $\{E_k^{\mathfrak{S}_n^{\pm}}\}_{k=0,1,\dots,n}$ in $\mathbf{k} \mathfrak{S}_n^{\pm}$, defined in work of Reutenauer [13], Gerstenhaber–Schack [10], and F. Bergeron and N. Bergeron [4].

The Eulerian idempotents lie within the subalgebras of the group algebras **k** *W* known as *Solomon's descent algebra* Sol(*W*), meaning that when expressed as $\sum_{w \in W} c_w w$, their coefficients c_w depend only upon the Coxeter group *descent set* of *w*. Work of Hanlon [11], Sundaram-Welker [16] and Brauner [6] gives a correspondence between these objects:

$$H^{2k}X_n \cong (\mathbf{k}\mathfrak{S}_n) E_{n-1-k}^{\mathfrak{S}_n} \text{ for } k = 0, 1, \dots, n-1,$$
(1.2)

$$H^{2k}Y_n \cong \left(\mathbf{k}\,\mathfrak{S}_n^{\pm}\right) E_{n-k}^{\mathfrak{S}_n^{\pm}} \quad \text{for } k = 0, 1, \dots, n.$$
(1.3)

In this abstract, we use (1.2) and (1.3) as the starting point to give a third correspondence of the form (1.1) for the space $Z_n := Y_n / \mathbb{Z}_2^n \cong \text{Conf}_n(\mathbb{RP}^2 \times (0, \infty))$, where \mathbb{Z}_2^n is the normal subgroup of \mathfrak{S}_n^{\pm} consisting of sign changes; thus $\mathfrak{S}_n \cong \mathfrak{S}_n^{\pm} / \mathbb{Z}_2^n$ acts on Z_n .

The idempotents $\{E_k^{\mathcal{P}_n}\}$ in this new correspondence lie inside the *peak algebra* \mathcal{P}_n , which is the further subalgebra of Sol(\mathfrak{S}_n) inside $\mathbf{k} \mathfrak{S}_n$ whose elements $\sum_{w \in W} c_w w$ have coefficients c_w depending only upon the *peak set* of $w = (w_0 := 0, w_1, \dots, w_n)$

$$Peak(w) := \{i : 1 \le i \le n-1 \text{ and } w_{i-1} < w_i > w_{i+1}\}.$$

Our main contribution is to relate the *peak representations* $(\mathbf{k} \mathfrak{S}_n) E_{n-k}^{\mathcal{P}_n}$ to the cohomology ring H^*Z_n , and to explicitly describe these families of representations in terms of Thrall's famed *higher Lie characters* Lie_{λ} for λ an integer partition of *n*.

Theorem 1.1. Let **k** be a field of characteristic zero.

- (*i*) The peak idempotent $E_k^{\mathcal{P}_n}$ in $\mathbf{k} \mathfrak{S}_n$ vanishes unless $k \equiv n \mod 2$.
- (ii) The cohomology $H^i Z_n = H^i(Z_n, \mathbf{k})$ vanishes unless $i \equiv 0 \mod 4$.
- (iii) As a \mathfrak{S}_n -representation, the total cohomology carries the regular representation:

$$H^*Z_n\cong \mathbf{k}\mathfrak{S}_n$$

(iv) For $0 \le k \le n$ with k even, one has \mathfrak{S}_n -representation isomorphisms

$$(\mathbf{k}\,\mathfrak{S}_n)\,E_{n-k}^{\mathcal{P}_n}\cong H^{2k}Z_n\cong \bigoplus_{\substack{\lambda\vdash n:\\ \mathrm{odd}(\lambda)=n-k}}\mathrm{Lie}_{\lambda}$$

where $odd(\lambda)$ is the number of odd parts of λ .

In fact, we refine Theorem 1.1 (see Theorems 4.4 and 4.6) by introducing several (compatible) decompositions of H^*Z_n and a family of primitive idempotents in \mathcal{P}_n .

Although \mathcal{P}_n is a well-known subalgebra of $Sol(\mathfrak{S}_n)$, it is in general difficult to directly relate the two algebras. Our work offers a step in this direction. The novelty of our approach is to avoid computations in the algebras themselves, and instead develop and utilize concrete combinatorial descriptions of the rings H^*X_n , H^*Y_n , and H^*Z_n .

The remainder of the abstract proceeds as follows. Section 2 gives necessary background on the Type *A* and *B* stories. We then develop properties of H^*Y_n in Section 3, which will be instrumental in proving our main results on the peak representations in Section 4. In Section 5 we provide generating function formulae and branching rule recursions for the peak representations, and relate this story to the free Jordan algebra.

2 Background

We review here in more detail the spaces X_n , Y_n , their cohomology rings, and their relationship to the Eulerian idempotents and Lie characters Lie_{λ} discussed in Section 1.

2.1 The (associated graded) Varchenko-Gelfand ring

The cohomology rings $\mathcal{X}_n := H^* X_n$ and $\mathcal{Y}_n := H^* Y_n$ are closely related to the *reflection* hyperplane arrangements $\mathcal{A}_W \subset V = \mathbb{R}^n$ associated to the groups $W = \mathfrak{S}_n, \mathfrak{S}_n^{\pm}$:

$$\mathcal{A}_{\mathfrak{S}_n} = \{x_i = x_j\}_{1 \le i < j \le n} \qquad \mathcal{A}_{\mathfrak{S}_n^{\pm}} = \{x_i = 0\}_{1 \le i \le n} \sqcup \{x_i = \pm x_j\}_{1 \le i < j \le n}$$

In particular, Moseley [12] proved there are algebra isomorphisms

$$\mathcal{X}_n \cong \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n}) \qquad \mathcal{Y}_n \cong \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n^{\pm}}),$$

where $\mathcal{VG}(\mathcal{A})$ is the (associated graded) Varchenko-Gelfand ring, defined for any real hyperplane arrangement $\mathcal{A} \subset \mathbb{R}^n$ as the quotient of $\mathbf{k}[u_i]_{H_i \in \mathcal{A}}$ by an ideal¹

$$\mathcal{J}_A = \langle u_i^2, \sum_{j=1}^c \epsilon(C, i_j) \cdot u_{i_1} u_{i_2} \cdots \widehat{u_{i_j}} \cdots u_{i_{c-1}} u_{i_c} \text{ for all } C \subset \mathcal{A} \rangle.$$

Here $C = (C_+, C_-)$ is an *oriented matroid* signed circuit of A, with $\epsilon(C, i_j) = \pm 1$, depending on whether i_j lies in C_+ or C_- .

Example 2.1. When $\mathcal{A} = \mathcal{A}_{\mathfrak{S}_n}$, work of Arnol'd [2] and Cohen [8] shows that \mathcal{X}_n has presentation given by

$$\mathcal{X}_n \cong \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n}) = \mathbf{k}[u_{ij}]_{1 \le i < j \le n} / \langle u_{ij}^2, \ u_{ij}u_{ik} - u_{ij}u_{jk} + u_{ik}u_{jk} \rangle.$$

Barcelo [3] constructed an elegant *non-broken circuit* monomial basis for X_n , obtained by taking products with at most one element from each set U_i below:

$$U_1 = \{u_{12}\}, U_2 = \{u_{13}, u_{23}\}, \cdots, U_{n-1} = \{u_{1n}, u_{2n}, \cdots, u_{(n-1),n}\}.$$

¹In fact, one can take coefficients in \mathbb{Z} rather than **k**. However, in what follows, we will want **k** to be a field with characteristic not dividing 2.

In [6], the second author showed that $\mathcal{VG}(\mathcal{A})$ admits a decomposition by intersection subspaces (i.e. flats) in \mathcal{A} . The component of $\mathcal{VG}(\mathcal{A})_X$ indexed by X is the \mathbb{Z} -span of all monomials $\{u_{i_1} \cdots u_{i_\ell}\}$ for which $H_{i_1} \cap \cdots \cap H_{i_\ell} = X$.

In the case of a reflection arrangement \mathcal{A}_W , we can group flats by their *W*-orbits [*X*], which gives a coarser decomposition of $\mathcal{VG}(\mathcal{A}_W) = \bigoplus \mathcal{VG}(\mathcal{A}_W)_{[X]}$. The flats and flat orbits in $\mathcal{A}_{\mathfrak{S}_n}$ and $\mathcal{A}_{\mathfrak{S}_n^{\pm}}$ have elegant (and useful!) combinatorial descriptions.

Famously, the flats of $\mathcal{A}_{\mathfrak{S}_n}$ biject with set partitions of [n]. This isomorphism identifies a flat X with the set partition $\pi_X = \{B_1, \dots, B_k\}$ where i and j are in the same block B_ℓ if and only if $x_i = x_j$ in X. The \mathfrak{S}_n -orbits of these flats biject with integer partitions of n: the orbit of π_X corresponds to the partition $\lambda_X = \{|B_1|, \dots, |B_k|\}$.

Similarly, the flats in $\mathcal{A}_{\mathfrak{S}_n^{\pm}}$ can be identified with a set partition on a *subset S* of $[n]^{\pm} := \{\overline{1}, \overline{2}, \dots, \overline{n}, 1, 2, \dots n\}$, where *S* does not contain both *i* and \overline{i} . Given a flat *X*, identify \overline{i} with $-x_i$ and let $\tau_X = \{C_1, \dots, C_k\}$ where for $i, j \in [n]$, indices *i* and *j* (resp. *i* and \overline{j}) appear in the same block C_ℓ if and only if $x_i = x_j \neq 0$ (resp. if and only if $x_i = -x_j \neq 0$) in *X*. Note that two set partitions related by $i \mapsto \overline{i}$ correspond to the same flat. The \mathfrak{S}_n^{\pm} orbit of τ_X is indexed by a partition $\mu_X = \{|C_i|, \dots, |C_k|\}$ of $0 \leq m \leq n$.

We write $\mathcal{X}_{\lambda_X}^{(n)} := \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n})_{[\pi_X]}$ and $\mathcal{Y}_{\mu_X}^{(n)} := \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n^{\pm}})_{[\tau_X]}$, giving the decompositions

$$\mathcal{X}_n = \bigoplus_{\lambda \vdash n} \mathcal{X}_{\lambda}^{(n)} \qquad \qquad \mathcal{Y}_n = \bigoplus_{\mu \vdash 0 \leq m \leq n} \mathcal{Y}_{\mu}^{(n)}.$$

2.2 The Eulerian idempotents and higher Lie characters

The idempotents $\{E_k^{\mathfrak{S}_n}\}$ and $\{E_k^{\mathfrak{S}_n^{\pm}}\}$ from Section 1 can be defined via the formula in [6]:

$$\sum_{k=0}^{r} t^{k} E_{k}^{W} = \frac{1}{|W|} \sum_{w \in W} \left(\prod_{i=1}^{\deg(w)} (t - e_{i}) \prod_{i=1}^{r - \deg(w)} (t + e_{i}) \right) \cdot w,$$

which recovers work of Garsia–Reutenauer [9] for $W = \mathfrak{S}_n$ and Bergeron–Bergeron [4] for $W = \mathfrak{S}_n^{\pm}$. Here, *r* is the *rank* of \mathcal{A}_W (r = n - 1 for $W = \mathfrak{S}_n$ and r = n for $W = \mathfrak{S}_n^{\pm}$) and the e_i are the *exponents* of W ($e_i = i$ for $W = \mathfrak{S}_n$ and $e_i = 2i - 1$ for $W = \mathfrak{S}_n^{\pm}$). The *descent number*, des(*w*) is the number of simple reflections *s* of *W* with $\ell(ws) < \ell(w)$.

The E_k^W have a refinement due to Bergeron–Bergeron–Howlett–Taylor [5], who introduced families of complete, primitive orthogonal idempotents in Sol(*W*) for any finite Coxeter group *W*. These idempotents, which we will call the *BBHT idempotents*, are indexed by *W*-flat orbits. We omit the technical definitions, but note that by the discussion in §2.1, for $W = \mathfrak{S}_n, \mathfrak{S}_n^{\pm}$ they can be indexed as $\{E_{\lambda}^{\mathfrak{S}_n} : \lambda \vdash n\}$ and $\{E_{\mu}^{\mathfrak{S}_n^{\pm}} : \mu \vdash m, m \leq n\}$. To recover the $\{E_k^{\mathfrak{S}_n}\}$ and $\{E_k^{\mathfrak{S}_n^{\pm}}\}$, group $\{E_{\lambda}^{\mathfrak{S}_n}\}$ and $\{E_{\mu}^{\mathfrak{S}_n^{\pm}}\}$ by partition *length* ℓ :

 $E_k^{\mathfrak{S}_n} = \sum_{\lambda: \ \ell(\lambda)=k} E_\lambda^{\mathfrak{S}_n} \qquad E_k^{\mathfrak{S}_n^{\pm}} = \sum_{\mu: \ \ell(\mu)=k} E_\mu^{\mathfrak{S}_n^{\pm}}.$ (2.1)

Theorem 2.2 (Brauner, [6]). There are \mathfrak{S}_n and \mathfrak{S}_n^{\pm} representation isomorphisms

$$\mathcal{X}_{\lambda}^{(n)} \cong (\mathbf{k} \mathfrak{S}_n) E_{\lambda}^{\mathfrak{S}_n} \qquad \qquad \mathcal{Y}_{\mu}^{(n)} \cong (\mathbf{k} \mathfrak{S}_n^{\pm}) E_{\mu}^{\mathfrak{S}_n^{\pm}}$$

In fact, there is more to say in the case of $W = \mathfrak{S}_n$, relating to the *higher Lie representations* {Lie_{λ}} of Thrall [17]. Let C_{λ} be the conjugacy class of \mathfrak{S}_n indexed by the partition $\lambda = (1^{m_1}, 2^{m_2}, \cdots n^{m_n})$. The centralizer Z_{λ} of an element of C_{λ} has isomorphism type

$$Z_{\lambda} \cong \prod_{j=1}^{n} \mathfrak{S}_{m_j}[\mathbb{Z}_j],$$

where \mathbb{Z}_j is the cyclic group of order j, and $\mathfrak{S}_{m_j}[\mathbb{Z}_j]$ is the wreath product. Specifically, the action of \mathfrak{S}_{m_i} in this wreath product swaps the m_j blocks of λ of size j.

We will be interested in a linear character ω_{λ} on Z_{λ} obtained from extending faithful characters on each \mathbb{Z}_j to Z_{λ} , where ω_{λ} restricts trivially on the wreath factors \mathfrak{S}_{m_j} of Z_{λ} .

Write \uparrow_{H}^{G} to be the representation induction from a subgroup *H* of *G* to *G*.

Definition 2.3. Give a partition $\lambda \vdash n$, define $\text{Lie}_{\lambda} := \omega_{\lambda} \uparrow_{Z_{\lambda}}^{\mathfrak{S}_{n}}$.

Thrall proved that $\mathbf{k} \mathfrak{S}_n \cong \bigoplus_{\lambda \vdash n} \operatorname{Lie}_{\lambda}$. A beautiful result of Hanlon [11] then shows that $\operatorname{Lie}_{\lambda} \cong (\mathbf{k} \mathfrak{S}_n) E_{\lambda}^{\mathfrak{S}_n}$. Using (2.1), we can thus conclude

$$(\mathbf{k}\mathfrak{S}_n) E_{n-1-k}^{\mathfrak{S}_n} \cong \bigoplus_{\substack{\lambda \vdash n:\\ \ell(\lambda) = n-k}} \operatorname{Lie}_{\lambda} \cong H^{2k} X_n.$$

Example 2.4. When $\lambda = (n)$, the representation $\text{Lie}_n := \text{Lie}_{(n)}$ is isomorphic to the multilinear component of the free Lie algebra, defined and generalized in §5.1.

3 Presentations, Filtrations, and Decompositions of H^*Y_n

Our first task is to study the ring $\mathcal{Y}_n := H^* Y_n$ in greater detail. It will be important for the remainder of this section to assume that **the field k has characteristic larger than** *n*, so that $2 \in \mathbf{k}^{\times}$ and $\mathbf{k}[\mathfrak{S}_n^{\pm}]$ is semisimple. This allows us to make an invertible change-of-variables that diagonalizes the action of the normal subgroup \mathbb{Z}_2^n within \mathfrak{S}_n^{\pm} .

The presentation of $\mathcal{Y}_n \cong \mathcal{VG}(\mathcal{A}_{\mathfrak{S}_n^{\pm}})$ was first given by Xicotencatl [18]; it is isomorphic to $\mathbf{k}[u_{ij}^+, u_{ij}^-, u_i] / J_{\mathfrak{S}_n^{\pm}}$ for $1 \le i < j \le n$, with generators corresponding to

$$u_{ij}^+ \longleftrightarrow \{x_i = x_j\}$$
 $u_{ij}^- \longleftrightarrow \{x_i = -x_j\}$ $u_i \longleftrightarrow \{x_i = 0\}$

respectively. The generating relations for $\mathcal{J}_{\mathfrak{S}_n^{\pm}}$ are given in Table 1.

We will introduce a new basis for \mathcal{Y}_n , a filtration using that basis, and a corresponding associated graded ring. Along the way, we will see several useful decompositions of \mathcal{Y}_n .

Definition 3.1. For $1 \le i < j \le n$, define an isomorphism of graded **k**-algebras \mathcal{B} by

$$u_i \longmapsto u_i \qquad v_{ij} \longmapsto u_{ij}^+ + u_{ij}^- \qquad w_{ij} \longmapsto u_{ij}^+ - u_{ij}^-$$

with inverse given by $\mathcal{B}^{-1}(u_i) = u_i, \mathcal{B}^{-1}(u_{ij}^+) = \frac{1}{2}(v_{ij} + w_{ij}), \mathcal{B}^{-1}(u_{ij}^-) = \frac{1}{2}(v_{ij} - w_{ij}).$

We wish to rewrite the presentation $\mathcal{Y}_n := \mathbf{k}[u_{ij}^+, u_{ij}^-, u_i] / \mathcal{J}_{\mathfrak{S}_n^\pm}$ in terms of these new variables v_{ij}, w_{ij} , using a Gröbner basis argument. Introduce a lexicographic monomial ordering \prec on $\mathbf{k}[v_{ij}, w_{ij}, u_i]$, in which the variables u_i, v_{ij}, w_{ij} are ordered as follows:

$$u_1 < u_2 < \cdots u_n < v_{12} < w_{12} < v_{13} < w_{13} < \cdots < v_{(n-1)1} < w_{(n-1)n}.$$
 (3.1)

Theorem 3.2. The isomorphism $\mathcal{B} : \mathbf{k}[v_{ij}, w_{ij}, u_i] \longrightarrow \mathbf{k}[u_{ij}^+, u_{ij}^-, u_i]$ induces a graded **k**-algebra isomorphism, where \mathcal{I} is generated by the relations \mathcal{G} listed in Table 1 below:

$$\mathbf{k}[v_{ij}, w_{ij}, u_i] / \mathcal{I} \xrightarrow{\sim} \mathbf{k}[u_{ij}^+, u_{ij}^-, u_i] / \mathcal{J}_{\mathfrak{S}_n^\pm} =: \mathcal{Y}_n,$$

Moreover, \mathcal{G} gives a Gröbner basis for the ideal \mathcal{I} with respect to \prec , in which the standard monomial **k**-basis for the quotient $\mathbf{k}[v_{ij}, w_{ij}, u_i] / \mathcal{I}$ is the set of monomials \mathcal{V} obtained from taking products with at most one element from each of these sets V_i :

 $V_1 = \{u_1\}, V_2 = \{u_2, v_{12}, w_{12}\}, \cdots, V_n = \{u_n, v_{1n}, w_{1n}, \cdots, v_{(n-1)n}, w_{(n-1)n}\}.$

We make two observations about the \mathfrak{S}_n^{\pm} action on \mathcal{Y}_n . First, elements of $\mathbb{Z}_2^n \subset \mathfrak{S}_n^{\pm}$ scale all of u_i, v_{ij}, w_{ij} via ± 1 ; thus Theorem 3.2 will allow us to construct a monomial basis for $H^*Z_n \cong (\mathcal{Y}_n)^{\mathbb{Z}_2^n}$ in §4. Second, the generators segregate into two \mathfrak{S}_n^{\pm} -orbits: $\{u_i\}_{1 \le i \le n}$ and $\{v_{ij}, w_{ij}\}_{1 \le i < j \le n}$. This leads to a helpful *filtration*, as follows.

For $q \in \mathbf{k}[v_{ij}, w_{ij}, u_i]$, let deg(q) be the polynomial degree of q, deg_V(q) to be the degree of q in the v_{ij} and w_{ij} variables, and deg_u(q) be the degree in the u_i variables. Our key insight is that \mathcal{Y}_n admits a filtration by deg_u. In particular, define the ideal

$$P^{(i)} := \{ q \in \mathcal{Y}_n \subset \mathbf{k}[u_i, v_{ij}, w_{ij}] : \deg_u(q) \ge i \}.$$

For example, when n = 2 the ideal $P^{(1)}$ is the **k**-span of $\{u_1, u_2, u_1v_{12}, u_1w_{12}, u_1u_2\}$.

Proposition 3.3. There are \mathfrak{S}_n^{\pm} -stable ascending filtrations on \mathcal{Y}_n given by

$$P^{(n)} \subset P^{(n-1)} \subset \cdots \subset P^{(1)} \subset P^{(0)}$$

The associated graded ring $\overline{\mathcal{Y}_n} = \bigoplus_{i=0}^n P^{(i)} / P^{(i+1)}$ has presentation $\mathbf{k}[v_{ij}, w_{ij}, u_i] / \mathfrak{gr}(\mathcal{I})$ for $1 \leq i < j \leq n$, where the relations generating $\mathfrak{gr}(\mathcal{I})$ are given in Table 1.

The motivation for introducing and studying the associated graded ring \mathcal{Y}_n is that in our context (i.e. $\mathbf{k} \mathfrak{S}_n^{\pm}$ being a semisimple algebra), we have $\overline{\mathcal{Y}_n} \cong \mathcal{Y}_n$ as \mathfrak{S}_n^{\pm} -modules. Hence, it suffices to study the basis and representations on $\overline{\mathcal{Y}_n}$.

We will see that \mathcal{Y}_n has several useful decompositions that make studying the representations on \mathcal{Y}_n (and eventually H^*Z_n) far more tractable.

Relations for $\mathcal{J}_{\mathfrak{S}_n^\pm}$	Relations for $\mathcal I$	Relations for $\mathfrak{gr}(\mathcal{I})$
u_i^2	u_i^2	u_i^2
$u_i u_{ij}^+ - u_i u_{ij}^ u_{ij}^+ u_{ij}^-$	$v_{ij}w_{ij}$	$v_{ij}w_{ij}$
$u_i u_j - u_i u_{ij}^ u_j u_{ij}^-$	$u_i w_{ij} - u_j v_{ij}$	$u_i w_{ij} - u_j v_{ij}$
$(u_{ij}^{+})^2$	$v_{ij}^2 - 2u_i w_{ij}$	v_{ij}^2
$(u_{ij}^{-})^2$	$w_{ij}^2 + 2u_i w_{ij}$	w_{ij}^2
$u_i u_j - u_i u_{ij}^ u_j u_{ij}^-$	$u_i v_{ij} - 2u_i u_j - u_j w_{ij}$	$u_i v_{ij} - u_j w_{ij}$
$u_{ij}^+ u_{jk}^+ - u_{ij}^+ u_{ik}^+ - u_{ik}^+ u_{jk}^+$	$v_{ij}w_{jk}-w_{ij}w_{ik}-v_{ik}v_{jk}$	$v_{ij}w_{jk} - w_{ij}w_{ik} - v_{ik}v_{jk}$
$u_{ij}^{-}u_{jk}^{+} - u_{ij}^{-}u_{ik}^{-} - u_{ik}^{-}u_{jk}^{+}$	$w_{ij}w_{jk} - v_{ij}w_{ik} - w_{ik}w_{jk}$	$w_{ij}w_{jk}-v_{ij}w_{ik}-w_{ik}w_{jk}$
$-u_{ij}^{-}u_{jk}^{-}+u_{ij}^{-}u_{ik}^{+}-u_{ik}^{+}u_{jk}^{-}$	$v_{ij}v_{jk} - v_{ij}v_{ik} - v_{ik}w_{jk}$	$v_{ij}v_{jk} - v_{ij}v_{ik} - v_{ik}w_{jk}$
$-u_{ij}^{+}u_{jk}^{-}+u_{ij}^{+}u_{ik}^{-}-u_{ik}^{-}u_{jk}^{-}$	$w_{ij}v_{jk}-w_{ij}v_{ik}-w_{ik}v_{jk}$	$w_{ij}v_{jk}-w_{ij}v_{ik}-w_{ik}v_{jk}$

Table 1: Generating relations for the ideals $\mathcal{J}_{\mathfrak{S}_{n'}}\mathcal{I}$ and $\mathfrak{gr}(\mathcal{I})$.

First, one can show that the flat orbit decomposition from §2.1 persists in $\overline{\mathcal{Y}_n}$; we will abuse notation and write $\mathcal{Y}_{\mu}^{(n)}$ instead of $\overline{\mathcal{Y}_{\mu}}^{(n)}$ since they are isomorphic.

The second useful decomposition is the following bi-grading:

$$\mathcal{Y}_{k,\ell}^{(n)} := \operatorname{span}_{\mathbf{k}} \{ q \in \overline{\mathcal{Y}_n} : \operatorname{deg}(q) = k \quad \operatorname{deg}_{\mathcal{V}}(q) = \ell \}.$$

In fact, this bi-grading can be refined to a third decomposition by signed partitions, which are pairs of partitions (λ^+, λ^-) such that $|\lambda^+| + |\lambda^-| = n$.

Definition 3.4. Given a monomial in $q \in \mathbb{Q}[u_i, v_{ij}, w_{ij}]$, associate to q a signed partition $(\lambda^+_{(q)}, \lambda^-_{(q)})$ as follows:

- 1. Construct a graph $\mathcal{G}(q)$ with vertex set $[n] = \{1, 2, \dots, n\}$ by drawing an edge between *i* and *j* if v_{ij} or w_{ij} occurs in *q*, and drawing a loop at *i* if u_i occurs in *q*;
- 2. Let $\mathcal{G}_1 = (E_1, V_1), \cdots, \mathcal{G}_k = (E_k, V_k)$ be the connected components of $\mathcal{G}(q)$. Then

$$\lambda^+_{(q)} := \{ |V_\ell| : \mathcal{G}_\ell \text{ has no loops} \} \quad \lambda^-_{(q)} := \{ |V_\ell| : \mathcal{G}_\ell \text{ has loops} \}$$

Proposition 3.5. There is a decomposition of $\overline{\mathcal{Y}_n}$ by signed partitions $\overline{\mathcal{Y}_n} = \bigoplus_{(\lambda^+,\lambda^-)} \mathcal{Y}^{(n)}_{(\lambda^+,\lambda^-)}$, where

$$\mathcal{Y}_{(\lambda^+,\lambda^-)}^{(n)} := \operatorname{span}_{\mathbf{k}} \{ \operatorname{monomials} q \in \overline{\mathcal{Y}_n} : (\lambda_{(q)}^+, \lambda_{(q)}^-) = (\lambda^+, \lambda^-) \}$$

This decomposition is compatible with the other decompositions of $\overline{\mathcal{Y}_n}$, in the sense that:

$$\mathcal{Y}_{\mu}^{(n)} = \bigoplus_{(\lambda^+, \lambda^-): \ \lambda^+ = \mu} \mathcal{Y}_{(\lambda^+, \lambda^-)}^{(n)} \qquad \qquad \mathcal{Y}_{k,\ell}^{(n)} = \bigoplus_{\substack{(\lambda^+, \lambda^-): \ \ell(\lambda^+) = n-k \\ \ell(\lambda^+) + \ell(\lambda^-) = n-\ell}} \mathcal{Y}_{(\lambda^+, \lambda^-)}^{(n)}$$

For example, suppose n = 8 and $q = w_{12} \cdot u_5 \cdot v_{56} \cdot u_7 \cdot v_{24}$. Then q is in the bi-graded piece $\mathcal{Y}_{5,3}^{(8)}$ and we have $\lambda_{(q)}^+ = \{3, 1, 1\}$ and $\lambda_{(q)}^- = \{2, 1\}$. Thus $q \in \mathcal{Y}_{((3,1,1),(2,1))}^{(8)} \subset \mathcal{Y}_{(3,1,1)}^{(8)}$.

Theorem 3.6. There is a well-defined, \mathfrak{S}_n -equivariant surjection of **k**-vector spaces

$$\gamma: \overline{\mathcal{Y}_n} \longrightarrow \mathcal{X}_n = \mathbf{k}[u_{ij}]_{1 \le i < j \le n} / \langle u_{ij}^2, u_{ij}u_{ik} - u_{ij}u_{jk} + u_{ik}u_{jk} \rangle$$
$$\mathcal{Y}^{(n)}_{(\lambda^+,\lambda^-)} \longmapsto \mathcal{X}^{(n)}_{(\lambda^+\cup\lambda^-)},$$

defined by sending $\gamma(u_i) = 1$, $\gamma(w_{ij}) = u_{ij}$, $\gamma(v_{ij}) = u_{ij}$.

Proof idea. The key observation is that the relations $u_i w_{ij} - u_j v_{ij}$ and $u_i v_{ij} - u_j w_{ij}$ in $\mathfrak{gr}(\mathcal{I})$ mean that one can give a presentation of $\overline{\mathcal{Y}_n}$ as a quotient of a subring of $\mathbf{k}[v_{ij}, w_{ij}, u_i]$, by an ideal $\tilde{\mathcal{I}} \subset \mathfrak{gr}(\mathcal{I})$ that omits the relation u_i^2 . From this, one can define a surjection of *vector spaces*; note however that γ cannot be extended to a map of algebras.

4 Main Results

At last, we are ready to analyze the peak representations. Our investigations began from an observation of Aguiar, Bergeron and Nyman [1] relating the descent algebras $Sol(\mathfrak{S}_n)$ and $Sol(\mathfrak{S}_n^{\pm})$ to the *peak algebra* \mathcal{P}_n .

Recall that one can express the hyperoctahedral group of all signed permutations as $\mathfrak{S}_n^{\pm} = \mathfrak{S}_n \ltimes \mathbb{Z}_2^n$ where \mathbb{Z}_2^n is the normal subgroup performing arbitrary sign changes in the coordinates. The quotient map $\mathfrak{S}_n^{\pm} \twoheadrightarrow \mathfrak{S}_n^{\pm} / \mathbb{Z}_2^n \cong \mathfrak{S}_n$ of groups, which forgets the signs in a signed permutation, gives rise to a surjective k-algebra map $\varphi : \mathbf{k} \mathfrak{S}_n^{\pm} \twoheadrightarrow \mathbf{k} \mathfrak{S}_n$. In [1], it was shown that the peak subalgebra \mathcal{P}_n is exactly the image under φ of $\mathrm{Sol}(\mathfrak{S}_n^{\pm})$, that is, φ restricts to an algebra surjection $\mathrm{Sol}(\mathfrak{S}_n^{\pm}) \xrightarrow{\varphi} \mathcal{P}_n$.

As a consequence, one can define a family of *peak idempotents* inside $\mathcal{P}_n \subset \mathbf{k} \mathfrak{S}_n$ via

$$E_k^{\mathcal{P}_n} := \varphi(E_k^{\mathfrak{S}_n^{\pm}}) \text{ for } k = 0, 1, \cdots, n \qquad E_{\mu}^{\mathcal{P}_n} := \varphi(E_{\mu}^{\mathfrak{S}_n^{\pm}}) \text{ for } \mu \vdash m \le n.$$

Both families inherit from $\{E_k^{\mathfrak{S}_n^{\pm}}\}$ and $\{E_{\mu}^{\mathfrak{S}_n^{\pm}}\}$ the property of being a complete system of orthogonal idempotents in $\mathbf{k} \mathfrak{S}_n$, and the $\{E_{\mu}^{\mathcal{P}_n}\}$ are also primitive if nonzero. Note that some of the $E_k^{\mathcal{P}_n}$ and $E_{\mu}^{\mathcal{P}_n}$ will be zero, which we characterize in Theorems 1.1 and 4.6. By construction, one recovers $E_k^{\mathcal{P}_n}$ from the $E_{\mu}^{\mathcal{P}_n}$ by summing over all μ of length k.

Our goal is to relate the peak idempotents to the ring $Z_n := H^*Z_n$, where

$$Z_n := Y_n / \mathbb{Z}_2^n = \operatorname{Conf}_n(\left(\mathbb{R}^3 \setminus \{\mathbf{0}\}\right) / \mathbb{Z}_2) = \operatorname{Conf}_n(\mathbb{R}\mathbb{P}^2 \times (0, \infty))$$

is the configuration space of *n* ordered points within the quotient $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ under the \mathbb{Z}_2 -action via $\mathbf{x} \mapsto -\mathbf{x}$, so that $(\mathbb{R}^3 \setminus \{\mathbf{0}\}) / \mathbb{Z}_2 \cong \mathbb{RP}^2 \times (0, \infty)$.

Note that $(\mathcal{Y}_n)^{\mathbb{Z}_2^n} \cong \mathbb{Z}_n$. The filtration, bigrading, and finer decompositions (by flat orbits and signed partitions) on \mathcal{Y}_n from Section 3 persist when one takes \mathbb{Z}_2^n -fixed spaces, giving a bigraded \mathfrak{S}_n -representation on an associated graded ring $\overline{\mathbb{Z}_n}$:

$$\mathcal{Z}_{k,\ell}^{(n)} := (\mathcal{Y}_{k,\ell}^{(n)})^{\mathbb{Z}_2^n}, \qquad \mathcal{Z}_{\mu}^{(n)} := (\mathcal{Y}_{\mu}^{(n)})^{\mathbb{Z}_2^n}, \qquad \mathcal{Z}_{(\lambda^+,\lambda^-)}^{(n)} := (\mathcal{Y}_{(\lambda^+,\lambda^-)}^{(n)})^{\mathbb{Z}_2^n}$$

We first construct monomial a basis for Z_n , using the fact that by Theorem 3.2, the basis \mathcal{V} of \mathcal{Y}_n diagonalizes the action of the normal subgroup $\mathbb{Z}_2^n \leq \mathfrak{S}_n^{\pm}$ on \mathcal{Y}_n .

Definition 4.1. For $1 \le i < j < k \le n$, let $\mathcal{I}_1 := \{u_i w_{ij}\}, \mathcal{I}_2 := \{w_{ij} w_{ik}\}, \mathcal{I}_3 := \{v_{ij} w_{jk}\}$. Let $\tilde{\mathcal{V}}$ be the monomials obtained from products in \mathcal{I}_j for j = 1, 2, 3 that are also in \mathcal{V} .

Theorem 4.2. The set $\tilde{\mathcal{V}}$ is a basis for \mathcal{Z}_n and $\overline{\mathcal{Z}_n}$ that is compatible with the decomposition by signed partitions: $\overline{\mathcal{Z}_n} = \bigoplus \mathcal{Z}_{(\lambda^+, \lambda^-)}^{(n)}$.

Proof idea. We construct a bijection from $\tilde{\mathcal{V}}$ to the monomial basis of \mathcal{X}_n from Example 2.1. This involves defining a "pairing lemma" to group quadratic terms appearing in $q \in \tilde{\mathcal{V}}$ and then mapping: $u_i w_{ij}$ to u_{ij} , $w_{ij} w_{ik}$ to $u_{ij} u_{ik}$, and $v_{ij} w_{jk}$ to $u_{ij} u_{jk}$.

Example 4.3. The basis for $\mathcal{Z}_{4,2}^{(4)}$ is $\{(u_1w_{12})(u_3w_{34}), (u_1w_{13})(u_2w_{24}), (u_1w_{14})(u_2w_{23})\}$.

Given a partition λ of *n*, recall that $\ell(\lambda)$ is its number of parts and $|\lambda|$ is its size. Let $Odd(\lambda)$ (resp. $Even(\lambda)$) be the partition obtained by taking only the odd (resp. even) parts of λ . We call λ an *odd partition* if $Odd(\lambda) = \lambda$ and an *even partition* if $Even(\lambda) = \lambda$. Write $odd(\lambda) = \ell(Odd(\lambda))$ and $even(\lambda) = \ell(Even(\lambda))$.

Theorem 4.4. The space $\mathcal{Z}_{(\lambda^+,\lambda^-)}^{(n)}$ vanishes unless λ^+ is an odd partition and λ^- is an even partition, while $\mathcal{Z}_{\mu}^{(n)}$ vanishes unless μ is an odd partition and $n - |\mu|$ is even. Moreover, the map γ restricts to an \mathfrak{S}_n -equivariant vector-space isomorphism $\gamma : \mathcal{Z}_n \longrightarrow \mathcal{X}_n$:

$$\gamma(\mathcal{Z}_{(\lambda^+,\lambda^-)}^{(n)}) = \mathcal{X}_{(\lambda^+\cup\lambda^-)}^{(n)} \qquad \gamma^{-1}(\mathcal{X}_{\lambda}^{(n)}) = \mathcal{Z}_{(\mathrm{Odd}(\lambda),\mathrm{Even}(\lambda))}^{(n)}.$$

Thus, for non-vanishing $\mathcal{Z}_{(\lambda^+,\lambda^-)}^{(n)}$, $\mathcal{Z}_{\mu}^{(n)}$, and $\mathcal{Z}_{2k,\ell}^{(n)}$, there are \mathfrak{S}_n -representation isomorphisms

$$\mathcal{Z}_{(\lambda^+,\lambda^-)}^{(n)} \cong \operatorname{Lie}_{(\lambda^+\cup\lambda^-)}, \qquad \mathcal{Z}_{\mu}^{(n)} \cong \bigoplus_{\lambda: \operatorname{Odd}(\lambda)=\mu} \operatorname{Lie}_{\lambda}, \qquad \mathcal{Z}_{2k,\ell}^{(n)} \cong \bigoplus_{\substack{\lambda:\ell(\lambda)=n-\ell\\ \operatorname{odd}(\lambda)=n-2k}} \operatorname{Lie}_{\lambda}.$$

Example 4.5. When n = 4, the non-vanishing pieces $\mathcal{Z}_{\mu}^{(4)}$ are as follows:

$$\mathcal{Z}_{\emptyset}^{(4)} \cong \operatorname{Lie}_{(2,2)} \oplus \operatorname{Lie}_{(4)} \quad \mathcal{Z}_{(1,1)}^{(4)} \cong \operatorname{Lie}_{(2,1,1)} \quad \mathcal{Z}_{(3,1)}^{(4)} \cong \operatorname{Lie}_{(3,1)} \quad \mathcal{Z}_{(1,1,1,1)}^{(4)} \cong \operatorname{Lie}_{(1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1)} = \operatorname{Lie}_{(1,1,1,1,1,1)} = \operatorname{Lie}_{$$

The non-vanishing bi-graded pieces $\mathcal{Z}^{(4)}_{2k,\ell}$ are

$$\mathcal{Z}_{0,0}^{(4)} \cong \operatorname{Lie}_{(1,1,1,1)} \quad \mathcal{Z}_{2,1}^{(4)} \cong \operatorname{Lie}_{(2,1,1)} \quad \mathcal{Z}_{2,2}^{(4)} \cong \operatorname{Lie}_{(3,1)} \quad \mathcal{Z}_{4,2}^{(4)} \cong \operatorname{Lie}_{(2,2)} \quad \mathcal{Z}_{4,3}^{(4)} \cong \operatorname{Lie}_{(4)}.$$

In fact, we now have all the tools necessary to provide a cohomological interpretation of the \mathfrak{S}_n -representations generated by the Peak idempotents, by analyzing the \mathbb{Z}_2^n fixed spaces of Theorem 2.2 and applying Theorem 4.4.

Theorem 4.6. The idempotent $E_{\mu}^{\mathcal{P}_n}$ does not vanish if and only if μ is an odd partition (including $\mu = \emptyset$) and $n - |\mu|$ is even. In this case, there are \mathfrak{S}_n -representation isomorphisms

$$(\mathbf{k} \mathfrak{S}_n) E_{\mu}^{\mathcal{P}_n} \cong \mathcal{Z}_{\mu}^{(n)} \cong \bigoplus_{\lambda: \operatorname{Odd}(\lambda) = \mu} \operatorname{Lie}_{\lambda}.$$

Note that combining Proposition 3.5 with Theorems 4.4 and 4.6 implies Theorem 1.1.

5 Hilbert series and the free Jordan algebra

Having established the connection between the peak algebra and the ring Z_n , we now develop enumerative and recursive properties of the latter.

Let Λ denote the *ring of symmetric functions* (of bounded degree, in infinitely many variables). It has a \mathbb{Z} -algebra isomorphism known as the *Frobenius characteristic map* ch : $\bigoplus_{n\geq 0} \operatorname{Rep}(\mathfrak{S}_n) \to \Lambda$, where $\operatorname{Rep}(\mathfrak{S}_n)$ are the *virtual characters* of \mathfrak{S}_n . We will study the Frobenius characteristic of $\mathcal{Z}_{2k,\ell}^{(n)}$, using the fact that $\mathcal{Z}_{2k+1,\ell}^{(n)} = 0$ by Theorem 1.1.

Definition 5.1. Write $\Lambda_{\mathbb{Z}[t,q]}$ to be the ring Λ with coefficients in $\mathbb{Z}[t,q]$ and define

$$M_n(t,q) := \sum_{k,\ell} \dim\left(\mathcal{Z}_{2k,\ell}^{(n)}\right) t^k q^\ell \in \mathbb{Z}[t,q], \qquad \mathcal{M}^{(n)}(t,q) := \sum_{k,\ell} \operatorname{ch}\left(\mathcal{Z}_{2k,\ell}^{(n)}\right) t^k q^\ell \in \Lambda_{\mathbb{Z}[t,q]}.$$

For $w \in \mathfrak{S}_n$ let even(w), odd(w) denote the number of even-sized and odd-sized cycles of w, and cyc(w) the number of cycles of w.

Theorem 5.2. Write $L_{\lambda} := ch(Lie_{\lambda})$. Then one can rewrite $M_n(t,q)$ and $\mathcal{M}^{(n)}(t,q)$ as follows:

$$M_n(t,q) = \sum_{w \in \mathfrak{S}_n} t^{\frac{n - \mathrm{odd}(w)}{2}} q^{n - \mathrm{cyc}(w)}, \qquad \qquad \mathcal{M}^{(n)}(t,q) = \sum_{\lambda \vdash n} L_\lambda \cdot t^{\frac{|\lambda| - \mathrm{odd}(\lambda)}{2}} q^{|\lambda| - \ell(\lambda)}.$$

Using Theorem 5.2, we manipulate the symmetric functions in $\mathcal{M}^{(n)}(t,q)$ to give a branching rule recurrence for the bi-graded pieces $\mathcal{Z}_{2k,\ell}^{(n)}$. Let \uparrow denote representation induction from \mathfrak{S}_n to \mathfrak{S}_{n+1} and \downarrow denote representation restriction from \mathfrak{S}_n to \mathfrak{S}_{n-1} .

Theorem 5.3. The restriction of $\mathcal{Z}_{2k,i}^{(n)}$ from an \mathfrak{S}_n to an \mathfrak{S}_{n-1} -module is given by

$$\mathcal{Z}_{2k,\ell}^{(n)} \downarrow = \mathcal{Z}_{2k,\ell}^{(n-1)} + \mathcal{Z}_{2(k-1),\ell-1}^{(n-2)} \uparrow + \left(\mathcal{Z}_{2(k-1),\ell-2}^{(n-2)} \uparrow \right) * \chi^{(n-2,1)}$$

where * is the Kronecker product and $\chi^{(n-2,1)}$ is the irreducible reflection representation of \mathfrak{S}_{n-1} .

Theorem 5.3 implies a recursive formula for $M_n(t,q)$ with interesting specializations:

$$M_n(1,q) = (1+q)(1+2q)\cdots(1+(n-1)q),$$
(5.1)

$$M_n(t,1) = (1 + (n-1)q) \cdot M_{n-1}(1,q),$$
(5.2)

where (5.1) is the generating function for the *Stirling numbers of the first kind*, and (5.2) describes the *Sheffer polynomials* [15] counting permutations w according to odd(w).

5.1 The space of simple Jordan elements

Finally, we mention an interesting connection between Z_n and the multilinear part of the *space of simple Jordan elements* within the free associative algebra $\mathbf{k} \langle \mathbf{x} \rangle = \mathbf{k} \langle x_1, \dots, x_n \rangle$.

Consider a deformation of the Lie bracket on $\mathbf{k} \langle \mathbf{x} \rangle$ by $\alpha \in \mathbb{C}$: $[x, y]_{\alpha} := xy - \alpha yx$. Let J_{α} be the smallest **k**-subspace of $\mathbf{k} \langle \mathbf{x} \rangle$ containing the generators **x** and closed under $[\cdot, \cdot]_{\alpha}$.

For example, $J_1 \subset \mathbf{k} \langle \mathbf{x} \rangle$ is the free Lie algebra. Define $V_n(\alpha) \subset J_\alpha$ to be the **k**-subspace spanned by these multilinear bracketings of homogeneous degree *n* for $w \in \mathfrak{S}_n$:

$$[[\cdots [x_{w(1)}, x_{w(2)}]_{\alpha}, x_{w(3)}]_{\alpha}, \cdots]_{\alpha}, x_{w(n)}]_{\alpha}$$

Then $V_n(1) \cong \text{Lie}_n$ is the multilinear component of the free Lie algebra, while $V_n(-1)$ is the multilinear part of the *space of simple Jordan elements*. The following was proved by Robbins in [14, §6, Thm. 7] and later in [7, Thm 2.1] by Calderbank–Hanlon–Sundaram:

$$V_n(-1) \cong \bigoplus_{\substack{\lambda \vdash n \\ \text{odd}(\lambda) = \ell(\lambda)}} \text{Lie}_{\lambda} \,. \tag{5.3}$$

We combine Theorem 4.4 and (5.3), to give a cohomological interpretation for $V_n(-1)$.

Corollary 5.4. The space $V_n(-1)$ is isomorphic as an \mathfrak{S}_n -representation to $\bigoplus_k \mathcal{Z}_{2k,2k}^{(n)}$.

Acknowledgements

The authors are grateful to Sheila Sundaram for bringing our attention to [7].

References

- [1] M. Aguiar, N. Bergeron, and K. Nyman. "The peak algebra and the descent algebras of types B and D". *Transactions of the American Mathematical Society* **356**.7 (2004), pp. 2781–2824.
- [2] I Arnol'd Vladimir. "The cohomology ring of the group of dyed braids". *Mat. Zametki* 5 (1969), pp. 227–231.
- [3] H. Barcelo. "On the action of the symmetric group on the free Lie algebra and the partition lattice". *Journal of Combinatorial Theory, Series A* **55**.1 (1990), pp. 93–129.
- [4] F. Bergeron and N. Bergeron. "Orthogonal idempotents in the descent algebra of B_n and applications". J. Pure Appl. Algebra **79**.2 (1992), pp. 109–129. DOI.
- [5] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor. "A decomposition of the descent algebra of a finite Coxeter group". *Journal of Algebraic Combinatorics* **1**.1 (1992), pp. 23–44.
- [6] S. Brauner. "Eulerian representations for real reflection groups". *Journal of the London Mathematical Society* **105**.1 (2022), pp. 412–444.
- [7] A. Calderbank, P Hanlon, and S Sundaram. "Representations of the symmetric group in deformations of the free Lie algebra". *Transactions of the American mathematical Society* 341.1 (1994), pp. 315–333.
- [8] F. R. Cohen, T. J. Lada, and P. J. May. *The homology of iterated loop spaces*. Springer, 2007.
- [9] A. M. Garsia and C. Reutenauer. "A decomposition of Solomon's descent algebra". Advances in Mathematics 77.2 (1989), pp. 189–262.
- [10] M. Gerstenhaber and S. D. Schack. "A Hodge-type decomposition for commutative algebra cohomology". *J. Pure Appl. Algebra* **48**.3 (1987), pp. 229–247. DOI.
- [11] P. Hanlon. "The action of *S_n* on the components of the Hodge decomposition of Hochschild homology". *Michigan Math. J.* **37**.1 (1990), pp. 105–124. DOI.
- [12] D. Moseley. "Equivariant cohomology and the Varchenko–Gelfand filtration". *Journal of Algebra* **472** (2017), pp. 95–114.
- [13] C. Reutenauer. "Free Lie algebras". *Handbook of algebra, Vol. 3.* Vol. 3. Handb. Algebr. Elsevier/North-Holland, Amsterdam, 2003, pp. 887–903. DOI.
- [14] D. P. Robbins. "Jordan elements in a free associative algebra, I". Journal of Algebra 19.3 (1971), pp. 354–378.
- [15] N. J. A. Sloane. "The on-line encyclopedia of integer sequences: A060524". 2020. Link.
- [16] S. Sundaram and V. Welker. "Group actions on arrangements of linear subspaces and applications to configuration spaces". *Transactions of the American Mathematical Society* 349.4 (1997), pp. 1389–1420.
- [17] R. M. Thrall. "On symmetrized Kronecker powers and the structure of the free Lie ring". *Amer. J. Math.* **64** (1942), pp. 371–388. DOI.
- [18] M. A. Xicoténcatl Merino. "Orbit configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces." *PhD Thesis–University of Rochester.* (1997).