Configuration spaces and peak representations

Marcelo Aguiar ${ }^{1}$, Sarah Brauner ${ }^{* 2}$, and Vic Reiner ${ }^{+3}$
${ }^{1}$ Department of Mathematics, Cornell University
${ }^{2}$ Département de mathématiques, Université du Québec à Montréal
${ }^{3}$ Department of Mathematics, University of Minnesota - Twin Cities

Abstract

Eulerian idempotents of types A and B generate representations with topological interpretations, as the cohomology of configuration spaces of types A and B. We provide an analogous cohomological interpretation for the representations generated by idempotents in the peak algebra, called the peak representations. We describe the peak representations as sums of Thrall's higher Lie characters, give Hilbert series and branching rule recursions for them, and discuss connections to Jordan algebras.

Keywords: Peak algebra, configuration spaces, Solomon's descent algebra, higher lie characters, hyperplane arrangements, Varchenko-Gelfand ring, Type A, Type B

1 Introduction

This abstract concerns the cohomology $H^{*} X=H^{*}(X, \mathbf{k})$ with coefficients in a field \mathbf{k} for three different topological configuration spaces $X=X_{n}, Y_{n}, Z_{n}$ having large symmetry groups W. For each, the (ungraded) cohomology carries the regular representation of W, that is, $H^{*} X \cong \mathbf{k} W$. Our goal is to study and exploit the following surprising fact: for \mathbf{k} of characteristic zero, the decomposition into $H^{i} X$ matches a combinatorial direct sum decomposition for certain complete families $\left\{E_{i}\right\}$ of orthogonal idempotents in $\mathbf{k} W$:

$$
\begin{equation*}
H^{*} X=\bigoplus_{i} H^{i} X \quad \cong \quad \bigoplus_{i}(\mathbf{k} W) E_{i}=\mathbf{k} W \tag{1.1}
\end{equation*}
$$

The first two spaces X_{n}, Y_{n} are well-studied: X_{n} is the ordered configuration space of n points in \mathbb{R}^{3} while Y_{n} is the \mathbb{Z}_{2}-orbit configuration spaces for the \mathbb{Z}_{2}-action via $\mathbf{x} \mapsto-\mathbf{x}$:

$$
\begin{aligned}
X_{n} & :=\operatorname{Conf}_{n} \mathbb{R}^{3}=\left\{\mathbf{x} \in\left(\mathbb{R}^{3}\right)^{n}: x_{i} \neq x_{j} \text { for } 1 \leq i<j \leq n\right\} \\
Y_{n} & :=\operatorname{Conf}_{n}^{Z_{2}} \mathbb{R}^{3}=\left\{\mathbf{x} \in\left(\mathbb{R}^{3}\right)^{n}: x_{i} \neq \pm x_{j} \text { for } 1 \leq i<j \leq n, \text { and } x_{i} \neq 0 \text { for } 1 \leq i \leq n\right\}
\end{aligned}
$$

Note that X_{n} has an action of the symmetric group $W=\mathfrak{S}_{n}$ permuting the coordinates of \mathbf{x}, while Y_{n} carries an action of the hyperoctahedral group $W=\mathfrak{S}_{n}^{ \pm}$by permuting and negating coordinates. Both spaces have cohomology concentrated only in even degrees and total cohomology carrying the regular representation $\mathbf{k} W$ for $W=\mathfrak{S}_{n}, \mathfrak{S}_{n}^{ \pm}$.

[^0]The idempotent decompositions of $\mathbf{k} \mathfrak{S}_{n}$ and $\mathbf{k} \mathfrak{S}_{n}^{ \pm}$will come from the type A and B Eulerian idempotents $\left\{E_{k}^{\mathfrak{S}_{n}}\right\}_{k=0,1, \ldots, n-1}$ in $\mathbf{k} \mathfrak{S}_{n}$ and $\left\{E_{k}^{\mathfrak{S}_{n}^{ \pm}}\right\}_{k=0,1, \ldots, n}$ in $\mathbf{k} \mathfrak{S}_{n}^{ \pm}$, defined in work of Reutenauer [13], Gerstenhaber-Schack [10], and F. Bergeron and N. Bergeron [4].

The Eulerian idempotents lie within the subalgebras of the group algebras $\mathbf{k} W$ known as Solomon's descent algebra $\operatorname{Sol}(W)$, meaning that when expressed as $\sum_{w \in W} c_{w} w$, their coefficients c_{w} depend only upon the Coxeter group descent set of w. Work of Hanlon [11], Sundaram-Welker [16] and Brauner [6] gives a correspondence between these objects:

$$
\begin{align*}
& H^{2 k} X_{n} \cong\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{n-1-k}^{\mathfrak{S}_{n}} \text { for } k=0,1, \ldots, n-1 \tag{1.2}\\
& H^{2 k} Y_{n} \cong\left(\mathbf{k} \mathfrak{S}_{n}^{ \pm}\right) E_{n-k}^{\mathfrak{S}_{n}^{ \pm}} \text {for } k=0,1, \ldots, n \tag{1.3}
\end{align*}
$$

In this abstract, we use (1.2) and (1.3) as the starting point to give a third correspondence of the form (1.1) for the space $Z_{n}:=Y_{n} / \mathbb{Z}_{2}^{n} \cong \operatorname{Conf}_{n}\left(\mathbb{R} \mathbb{P}^{2} \times(0, \infty)\right)$, where \mathbb{Z}_{2}^{n} is the normal subgroup of $\mathfrak{S}_{n}^{ \pm}$consisting of sign changes; thus $\mathfrak{S}_{n} \cong \mathfrak{S}_{n}^{ \pm} / \mathbb{Z}_{2}^{n}$ acts on Z_{n}.

The idempotents $\left\{E_{k}^{\mathcal{P}_{n}}\right\}$ in this new correspondence lie inside the peak algebra \mathcal{P}_{n}, which is the further subalgebra of $\operatorname{Sol}\left(\mathfrak{S}_{n}\right)$ inside $\mathbf{k} \mathfrak{S}_{n}$ whose elements $\sum_{w \in W} c_{w} w$ have coefficients c_{w} depending only upon the peak set of $w=\left(w_{0}:=0, w_{1}, \ldots, w_{n}\right)$

$$
\operatorname{Peak}(w):=\left\{i: 1 \leq i \leq n-1 \text { and } w_{i-1}<w_{i}>w_{i+1}\right\}
$$

Our main contribution is to relate the peak representations $\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{n-k}^{\mathcal{P}_{n}}$ to the cohomology ring $H^{*} Z_{n}$, and to explicitly describe these families of representations in terms of Thrall's famed higher Lie characters $\operatorname{Lie}_{\lambda}$ for λ an integer partition of n.
Theorem 1.1. Let \mathbf{k} be a field of characteristic zero.
(i) The peak idempotent $E_{k}^{\mathcal{P}_{n}}$ in $\mathbf{k} \mathfrak{S}_{n}$ vanishes unless $k \equiv n \bmod 2$.
(ii) The cohomology $H^{i} Z_{n}=H^{i}\left(Z_{n}, \mathbf{k}\right)$ vanishes unless $i \equiv 0 \bmod 4$.
(iii) As a \mathfrak{S}_{n}-representation, the total cohomology carries the regular representation:

$$
H^{*} Z_{n} \cong \mathbf{k} \mathfrak{S}_{n}
$$

(iv) For $0 \leq k \leq n$ with k even, one has \mathfrak{S}_{n}-representation isomorphisms

$$
\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{n-k}^{\mathcal{P}_{n}} \cong H^{2 k} Z_{n} \cong \bigoplus_{\substack{\lambda+n: \\ \operatorname{odd}(\lambda)=n-k}} \operatorname{Lie}_{\lambda}
$$

where $\operatorname{odd}(\lambda)$ is the number of odd parts of λ.
In fact, we refine Theorem 1.1 (see Theorems 4.4 and 4.6) by introducing several (compatible) decompositions of $H^{*} Z_{n}$ and a family of primitive idempotents in \mathcal{P}_{n}.

Although \mathcal{P}_{n} is a well-known subalgebra of $\operatorname{Sol}\left(\mathfrak{S}_{n}\right)$, it is in general difficult to directly relate the two algebras. Our work offers a step in this direction. The novelty of our approach is to avoid computations in the algebras themselves, and instead develop and utilize concrete combinatorial descriptions of the rings $H^{*} X_{n}, H^{*} Y_{n}$, and $H^{*} Z_{n}$.

The remainder of the abstract proceeds as follows. Section 2 gives necessary background on the Type A and B stories. We then develop properties of $H^{*} Y_{n}$ in Section 3, which will be instrumental in proving our main results on the peak representations in Section 4. In Section 5 we provide generating function formulae and branching rule recursions for the peak representations, and relate this story to the free Jordan algebra.

2 Background

We review here in more detail the spaces X_{n}, Y_{n}, their cohomology rings, and their relationship to the Eulerian idempotents and Lie characters Lie λ_{λ} discussed in Section 1.

2.1 The (associated graded) Varchenko-Gelfand ring

The cohomology rings $\mathcal{X}_{n}:=H^{*} X_{n}$ and $\mathcal{Y}_{n}:=H^{*} Y_{n}$ are closely related to the reflection hyperplane arrangements $\mathcal{A}_{W} \subset V=\mathbb{R}^{n}$ associated to the groups $W=\mathfrak{S}_{n}, \mathfrak{S}_{n}^{ \pm}$:

$$
\mathcal{A}_{\mathfrak{S}_{n}}=\left\{x_{i}=x_{j}\right\}_{1 \leq i<j \leq n} \quad \mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}=\left\{x_{i}=0\right\}_{1 \leq i \leq n} \sqcup\left\{x_{i}= \pm x_{j}\right\}_{1 \leq i<j \leq n} .
$$

In particular, Moseley [12] proved there are algebra isomorphisms

$$
\mathcal{X}_{n} \cong \mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right) \quad \mathcal{Y}_{n} \cong \mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}\right)
$$

where $\mathcal{V} \mathcal{G}(\mathcal{A})$ is the (associated graded) Varchenko-Gelfand ring, defined for any real hyperplane arrangement $\mathcal{A} \subset \mathbb{R}^{n}$ as the quotient of $\mathbf{k}\left[u_{i}\right]_{H_{i} \in \mathcal{A}}$ by an ideal ${ }^{1}$

$$
\mathcal{J}_{A}=\left\langle u_{i}^{2}, \quad \sum_{j=1}^{c} \epsilon\left(C, i_{j}\right) \cdot u_{i_{1}} u_{i_{2}} \cdots \widehat{u_{i_{j}}} \cdots u_{i_{c-1}} u_{i_{c}} \text { for all } C \subset \mathcal{A}\right\rangle .
$$

Here $C=\left(C_{+}, C_{-}\right)$is an oriented matroid signed circuit of \mathcal{A}, with $\epsilon\left(C, i_{j}\right)= \pm 1$, depending on whether i_{j} lies in C_{+}or C_{-}.

Example 2.1. When $\mathcal{A}=\mathcal{A}_{\mathfrak{S}_{n}}$, work of Arnol'd [2] and Cohen [8] shows that \mathcal{X}_{n} has presentation given by

$$
\mathcal{X}_{n} \cong \mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=\mathbf{k}\left[u_{i j}\right]_{1 \leq i<j \leq n} /\left\langle u_{i j}^{2}, u_{i j} u_{i k}-u_{i j} u_{j k}+u_{i k} u_{j k}\right\rangle
$$

Barcelo [3] constructed an elegant non-broken circuit monomial basis for \mathcal{X}_{n}, obtained by taking products with at most one element from each set U_{i} below:

$$
U_{1}=\left\{u_{12}\right\}, U_{2}=\left\{u_{13}, u_{23}\right\}, \cdots, U_{n-1}=\left\{u_{1 n}, u_{2 n}, \cdots, u_{(n-1), n}\right\}
$$

[^1]In [6], the second author showed that $\mathcal{V G}(\mathcal{A})$ admits a decomposition by intersection subspaces (i.e. flats) in \mathcal{A}. The component of $\mathcal{V G}(\mathcal{A})_{X}$ indexed by X is the \mathbb{Z}-span of all monomials $\left\{u_{i_{1}} \cdots u_{i_{\ell}}\right\}$ for which $H_{i_{1}} \cap \cdots \cap H_{i_{\ell}}=X$.

In the case of a reflection arrangement \mathcal{A}_{W}, we can group flats by their W-orbits $[X]$, which gives a coarser decomposition of $\mathcal{V} \mathcal{G}\left(\mathcal{A}_{W}\right)=\bigoplus \mathcal{V} \mathcal{G}\left(\mathcal{A}_{W}\right)_{[X]}$. The flats and flat orbits in $\mathcal{A}_{\mathfrak{S}_{n}}$ and $\mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}$have elegant (and useful!) combinatorial descriptions.

Famously, the flats of $\mathcal{A}_{\mathfrak{S}_{n}}$ biject with set partitions of $[n]$. This isomorphism identifies a flat X with the set partition $\pi_{X}=\left\{B_{1}, \cdots, B_{k}\right\}$ where i and j are in the same block B_{ℓ} if and only if $x_{i}=x_{j}$ in X. The \mathfrak{S}_{n}-orbits of these flats biject with integer partitions of n : the orbit of π_{X} corresponds to the partition $\lambda_{X}=\left\{\left|B_{1}\right|, \cdots,\left|B_{k}\right|\right\}$.

Similarly, the flats in $\mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}$can be identified with a set partition on a subset S of $[n]^{ \pm}:=\{\overline{1}, \overline{2}, \cdots, \bar{n}, 1,2, \cdots n\}$, where S does not contain both i and \bar{i}. Given a flat X, identify \bar{i} with $-x_{i}$ and let $\tau_{X}=\left\{C_{1}, \cdots C_{k}\right\}$ where for $i, j \in[n]$, indices i and j (resp. i and \bar{j}) appear in the same block C_{ℓ} if and only if $x_{i}=x_{j} \neq 0$ (resp. if and only if $x_{i}=-x_{j} \neq 0$) in X. Note that two set partitions related by $i \mapsto \bar{i}$ correspond to the same flat. The $\mathfrak{S}_{n}^{ \pm}$orbit of τ_{X} is indexed by a partition $\mu_{X}=\left\{\left|C_{i}\right|, \cdots,\left|C_{k}\right|\right\}$ of $0 \leq m \leq n$.

We write $\mathcal{X}_{\lambda_{X}}^{(n)}:=\mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)_{\left[\pi_{X}\right]}$ and $\mathcal{Y}_{\mu_{X}}^{(n)}:=\mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}\right)_{\left[\tau_{X}\right]}$, giving the decompositions

$$
\mathcal{X}_{n}=\bigoplus_{\lambda \vdash n} \mathcal{X}_{\lambda}^{(n)} \quad \mathcal{Y}_{n}=\bigoplus_{\mu \vdash 0 \leq m \leq n} \mathcal{Y}_{\mu}^{(n)}
$$

2.2 The Eulerian idempotents and higher Lie characters

The idempotents $\left\{E_{k}^{\mathfrak{S}_{n}}\right\}$ and $\left\{E_{k}^{\mathfrak{S}_{n}^{ \pm}}\right\}$from Section 1 can be defined via the formula in [6]:

$$
\sum_{k=0}^{r} t^{k} E_{k}^{W}=\frac{1}{|W|} \sum_{w \in W}\left(\prod_{i=1}^{\operatorname{des}(w)}\left(t-e_{i}\right) \prod_{i=1}^{r-\operatorname{des}(w)}\left(t+e_{i}\right)\right) \cdot w
$$

which recovers work of Garsia-Reutenauer [9] for $W=\mathfrak{S}_{n}$ and Bergeron-Bergeron [4] for $W=\mathfrak{S}_{n}^{ \pm}$. Here, r is the rank of $\mathcal{A}_{W}\left(r=n-1\right.$ for $W=\mathfrak{S}_{n}$ and $r=n$ for $\left.W=\mathfrak{S}_{n}^{ \pm}\right)$ and the e_{i} are the exponents of $W\left(e_{i}=i\right.$ for $W=\mathfrak{S}_{n}$ and $e_{i}=2 i-1$ for $\left.W=\mathfrak{S}_{n}^{ \pm}\right)$. The descent number, $\operatorname{des}(w)$ is the number of simple reflections s of W with $\ell(w s)<\ell(w)$.

The E_{k}^{W} have a refinement due to Bergeron-Bergeron-Howlett-Taylor [5], who introduced families of complete, primitive orthogonal idempotents in $\operatorname{Sol}(W)$ for any finite Coxeter group W. These idempotents, which we will call the BBHT idempotents, are indexed by W-flat orbits. We omit the technical definitions, but note that by the discussion in $\S 2.1$, for $W=\mathfrak{S}_{n}, \mathfrak{S}_{n}^{ \pm}$they can be indexed as $\left\{E_{\lambda}^{\mathfrak{S}_{n}}: \lambda \vdash n\right\}$ and $\left\{E_{\mu}^{\mathfrak{S}_{n}^{ \pm}}: \mu \vdash m, m \leq n\right\}$.

To recover the $\left\{E_{k}^{\mathfrak{S}_{n}}\right\}$ and $\left\{E_{k}^{\mathfrak{S}_{n}^{ \pm}}\right\}$, group $\left\{E_{\lambda}^{\mathfrak{S}_{n}}\right\}$ and $\left\{E_{\mu}^{\mathfrak{S}_{n}^{ \pm}}\right\}$by partition length ℓ :

$$
\begin{equation*}
E_{k}^{\mathfrak{S}_{n}}=\sum_{\lambda: \ell(\lambda)=k} E_{\lambda}^{\mathfrak{S}_{n}} \quad E_{k}^{\mathfrak{S}_{n}^{ \pm}}=\sum_{\mu: \ell(\mu)=k} E_{\mu}^{\mathfrak{S}_{n}^{ \pm}} \tag{2.1}
\end{equation*}
$$

We can also refine the isomorphisms in (1.2) and (1.3) using the BBHT idempotents:
Theorem 2.2 (Brauner, [6]). There are \mathfrak{S}_{n} and $\mathfrak{S}_{n}^{ \pm}$representation isomorphisms

$$
\mathcal{X}_{\lambda}^{(n)} \cong\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{\lambda}^{\mathfrak{S}_{n}} \quad \mathcal{Y}_{\mu}^{(n)} \cong\left(\mathbf{k} \mathfrak{S}_{n}^{ \pm}\right) E_{\mu}^{\mathfrak{S}_{n}^{ \pm}}
$$

In fact, there is more to say in the case of $W=\mathfrak{S}_{n}$, relating to the higher Lie representations $\left\{\operatorname{Lie}_{\lambda}\right\}$ of Thrall [17]. Let \mathcal{C}_{λ} be the conjugacy class of \mathfrak{S}_{n} indexed by the partition $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \cdots n^{m_{n}}\right)$. The centralizer Z_{λ} of an element of \mathcal{C}_{λ} has isomorphism type

$$
Z_{\lambda} \cong \prod_{j=1}^{n} \mathfrak{S}_{m_{j}}\left[\mathbb{Z}_{j}\right]
$$

where \mathbb{Z}_{j} is the cyclic group of order j, and $\mathfrak{S}_{m_{j}}\left[\mathbb{Z}_{j}\right]$ is the wreath product. Specifically, the action of $\mathfrak{S}_{m_{j}}$ in this wreath product swaps the m_{j} blocks of λ of size j.

We will be interested in a linear character ω_{λ} on Z_{λ} obtained from extending faithful characters on each \mathbb{Z}_{j} to Z_{λ}, where ω_{λ} restricts trivially on the wreath factors $\mathfrak{S}_{m_{j}}$ of Z_{λ}.

Write \uparrow_{H}^{G} to be the representation induction from a subgroup H of G to G.
Definition 2.3. Give a partition $\lambda \vdash n$, define $\operatorname{Lie}_{\lambda}:=\omega_{\lambda} \uparrow_{Z_{\lambda}}^{\mathfrak{S}_{n}}$.
Thrall proved that $\mathbf{k} \mathfrak{S}_{n} \cong \bigoplus_{\lambda \vdash n}$ Lie $_{\lambda}$. A beautiful result of Hanlon [11] then shows that $\operatorname{Lie}_{\lambda} \cong\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{\lambda}^{\mathfrak{S}_{n}}$. Using (2.1), we can thus conclude

$$
\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{n-1-k}^{\mathfrak{S}_{n}} \cong \bigoplus_{\substack{\lambda \vdash n: \\ \ell(\lambda)=n-k}} \operatorname{Lie}_{\lambda} \cong H^{2 k} X_{n} .
$$

Example 2.4. When $\lambda=(n)$, the representation $\operatorname{Lie}_{n}:=\operatorname{Lie}_{(n)}$ is isomorphic to the multilinear component of the free Lie algebra, defined and generalized in §5.1.

3 Presentations, Filtrations, and Decompositions of $H^{*} Y_{n}$

Our first task is to study the ring $\mathcal{Y}_{n}:=H^{*} Y_{n}$ in greater detail. It will be important for the remainder of this section to assume that the field \mathbf{k} has characteristic larger than n, so that $2 \in \mathbf{k}^{\times}$and $\mathbf{k}\left[\mathfrak{S}_{n}^{ \pm}\right]$is semisimple. This allows us to make an invertible change-of-variables that diagonalizes the action of the normal subgroup \mathbb{Z}_{2}^{n} within $\mathfrak{S}_{n}^{ \pm}$.

The presentation of $\mathcal{Y}_{n} \cong \mathcal{V} \mathcal{G}\left(\mathcal{A}_{\mathfrak{S}_{n}^{ \pm}}\right)$was first given by Xicotencatl [18]; it is isomorphic to $\mathbf{k}\left[u_{i j}^{+}, u_{i j}^{-}, u_{i}\right] / J_{\mathfrak{S}_{n}^{ \pm}}$for $1 \leq i<j \leq n$, with generators corresponding to

$$
u_{i j}^{+} \longleftrightarrow\left\{x_{i}=x_{j}\right\} \quad u_{i j}^{-} \longleftrightarrow\left\{x_{i}=-x_{j}\right\} \quad u_{i} \longleftrightarrow\left\{x_{i}=0\right\}
$$

respectively. The generating relations for $\mathcal{J}_{\mathfrak{S}_{n}^{ \pm}}$are given in Table 1.
We will introduce a new basis for \mathcal{Y}_{n}, a filtration using that basis, and a corresponding associated graded ring. Along the way, we will see several useful decompositions of \mathcal{Y}_{n}.

Definition 3.1. For $1 \leq i<j \leq n$, define an isomorphism of graded \mathbf{k}-algebras \mathcal{B} by

$$
u_{i} \longmapsto u_{i} \quad v_{i j} \longmapsto u_{i j}^{+}+u_{i j}^{-} \quad w_{i j} \longmapsto u_{i j}^{+}-u_{i j}^{-}
$$

with inverse given by $\mathcal{B}^{-1}\left(u_{i}\right)=u_{i}, \mathcal{B}^{-1}\left(u_{i j}^{+}\right)=\frac{1}{2}\left(v_{i j}+w_{i j}\right), \mathcal{B}^{-1}\left(u_{i j}^{-}\right)=\frac{1}{2}\left(v_{i j}-w_{i j}\right)$.
We wish to rewrite the presentation $\mathcal{Y}_{n}:=\mathbf{k}\left[u_{i j}^{+}, u_{i j}^{-}, u_{i}\right] / \mathcal{J}_{\mathfrak{S}_{n}^{ \pm}}$in terms of these new variables $v_{i j}, w_{i j}$, using a Gröbner basis argument. Introduce a lexicographic monomial ordering \prec on $\mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right]$, in which the variables $u_{i}, v_{i j}, w_{i j}$ are ordered as follows:

$$
\begin{equation*}
u_{1}<u_{2}<\cdots u_{n}<v_{12}<w_{12}<v_{13}<w_{13}<\cdots<v_{(n-1) 1}<w_{(n-1) n} \tag{3.1}
\end{equation*}
$$

Theorem 3.2. The isomorphism $\mathcal{B}: \mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right] \longrightarrow \mathbf{k}\left[u_{i j}^{+}, u_{i j}^{-}, u_{i}\right]$ induces a graded \mathbf{k}-algebra isomorphism, where \mathcal{I} is generated by the relations \mathcal{G} listed in Table 1 below:

$$
\mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right] / \mathcal{I} \xrightarrow{\sim} \mathbf{k}\left[u_{i j}^{+}, u_{i j}^{-}, u_{i}\right] / \mathcal{J}_{\mathfrak{S}_{n}^{ \pm}}=: \mathcal{Y}_{n}
$$

Moreover, \mathcal{G} gives a Gröbner basis for the ideal \mathcal{I} with respect to \prec, in which the standard monomial \mathbf{k}-basis for the quotient $\mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right] / \mathcal{I}$ is the set of monomials \mathcal{V} obtained from taking products with at most one element from each of these sets V_{i} :

$$
V_{1}=\left\{u_{1}\right\}, V_{2}=\left\{u_{2}, v_{12}, w_{12}\right\}, \cdots, V_{n}=\left\{u_{n}, v_{1 n}, w_{1 n}, \cdots, v_{(n-1) n}, w_{(n-1) n}\right\}
$$

We make two observations about the $\mathfrak{S}_{n}^{ \pm}$action on \mathcal{Y}_{n}. First, elements of $\mathbb{Z}_{2}^{n} \subset \mathfrak{S}_{n}^{ \pm}$ scale all of $u_{i}, v_{i j}, w_{i j}$ via ± 1; thus Theorem 3.2 will allow us to construct a monomial basis for $H^{*} Z_{n} \cong\left(\mathcal{Y}_{n}\right)^{Z_{2}^{n}}$ in $\S 4$. Second, the generators segregate into two $\mathfrak{S}_{n}^{ \pm}$-orbits: $\left\{u_{i}\right\}_{1 \leq i \leq n}$ and $\left\{v_{i j}, w_{i j}\right\}_{1 \leq i<j \leq n}$. This leads to a helpful filtration, as follows.

For $q \in \mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right]$, let $\operatorname{deg}(q)$ be the polynomial degree of $q, \operatorname{deg}_{\mathcal{V}}(q)$ to be the degree of q in the $v_{i j}$ and $w_{i j}$ variables, and $\operatorname{deg}_{u}(q)$ be the degree in the u_{i} variables. Our key insight is that \mathcal{Y}_{n} admits a filtration by deg_{u}. In particular, define the ideal

$$
P^{(i)}:=\left\{q \in \mathcal{Y}_{n} \subset \mathbf{k}\left[u_{i}, v_{i j}, w_{i j}\right]: \operatorname{deg}_{u}(q) \geq i\right\} .
$$

For example, when $n=2$ the ideal $P^{(1)}$ is the \mathbf{k}-span of $\left\{u_{1}, u_{2}, u_{1} v_{12}, u_{1} w_{12}, u_{1} u_{2}\right\}$. Proposition 3.3. There are $\mathfrak{S}_{n}^{ \pm}$-stable ascending filtrations on \mathcal{Y}_{n} given by

$$
P^{(n)} \subset P^{(n-1)} \subset \cdots \subset P^{(1)} \subset P^{(0)}
$$

The associated graded ring $\overline{\mathcal{Y}_{n}}=\bigoplus_{i=0}^{n} P^{(i)} / P^{(i+1)}$ has presentation $\mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right] / \mathfrak{g r}(\mathcal{I})$ for $1 \leq i<j \leq n$, where the relations generating $\mathfrak{g r}(\mathcal{I})$ are given in Table 1.

The motivation for introducing and studying the associated graded ring $\overline{\mathcal{Y}_{n}}$ is that in our context (i.e. $\mathbf{k} \mathfrak{S}_{n}^{ \pm}$being a semisimple algebra), we have $\overline{\mathcal{Y}_{n}} \cong \mathcal{Y}_{n}$ as $\mathfrak{S}_{n}^{ \pm}$-modules. Hence, it suffices to study the basis and representations on $\overline{\mathcal{Y}_{n}}$.

We will see that $\overline{\mathcal{Y}_{n}}$ has several useful decompositions that make studying the representations on \mathcal{Y}_{n} (and eventually $H^{*} Z_{n}$) far more tractable.

Relations for $\mathcal{J}_{\mathfrak{S}_{n}^{ \pm}}$	Relations for \mathcal{I}	Relations for $\mathfrak{g r}(\mathcal{I})$
u_{i}^{2}	u_{i}^{2}	u_{i}^{2}
$u_{i} u_{i j}^{+}-u_{i} u_{i j}^{-}-u_{i j}^{+} u_{i j}^{-}$	$v_{i j} w_{i j}$	$v_{i j} w_{i j}$
$u_{i} u_{j}-u_{i} u_{i j}^{-}-u_{j} u_{i j}^{-}$	$u_{i} w_{i j}-u_{j} v_{i j}$	$u_{i} w_{i j}-u_{j} v_{i j}$
$\left(u_{i j}^{+}\right)^{2}$	$v_{i j}^{2}-2 u_{i} w_{i j}$	$v_{i j}^{2}$
$\left(u_{i j}^{-}\right)^{2}$	$w_{i j}^{2}+2 u_{i} w_{i j}$	$w_{i j}^{2}$
$u_{i} u_{j}-u_{i} u_{i j}^{-}-u_{j} u_{i j}^{-}$	$u_{i} v_{i j}-2 u_{i} u_{j}-u_{j} w_{i j}$	$u_{i} v_{i j}-u_{j} w_{i j}$
$u_{i j}^{+} u_{j k}^{+}-u_{i j}^{+} u_{i k}^{+}-u_{i k}^{+} u_{j k}^{+}$	$v_{i j} w_{j k}-w_{i j} w_{i k}-v_{i k} v_{j k}$	$v_{i j} w_{j k}-w_{i j} w_{i k}-v_{i k} v_{j k}$
$u_{i j}^{-} u_{j k}^{+}-u_{i j}^{-} u_{i k}^{-}-u_{i k}^{-} u_{j k}^{+}$	$w_{i j} w_{j k}-v_{i j} w_{i k}-w_{i k} w_{j k}$	$w_{i j} w_{j k}-v_{i j} w_{i k}-w_{i k} w_{j k}$
$-u_{i j}^{-} u_{j k}^{-}+u_{i j}^{-} u_{i k}^{+}-u_{i k}^{+} u_{j k}^{-}$	$v_{i j} v_{j k}-v_{i j} v_{i k}-v_{i k} w_{j k}$	$v_{i j} v_{j k}-v_{i j} v_{i k}-v_{i k} w_{j k}$
$-u_{i j}^{+} u_{j k}^{-}+u_{i j}^{+} u_{i k}^{-}-u_{i k}^{-} u_{j k}^{-}$	$w_{i j} v_{j k}-w_{i j} v_{i k}-w_{i k} v_{j k}$	$w_{i j} v_{j k}-w_{i j} v_{i k}-w_{i k} v_{j k}$

Table 1: Generating relations for the ideals $\mathcal{J}_{\mathfrak{S}_{n}}, \mathcal{I}$ and $\mathfrak{g r}(\mathcal{I})$.
First, one can show that the flat orbit decomposition from $\S 2.1$ persists in $\overline{\mathcal{Y}_{n}}$; we will abuse notation and write $\mathcal{Y}_{\mu}^{(n)}$ instead of $\overline{\mathcal{Y}}_{\mu}{ }^{(n)}$ since they are isomorphic.

The second useful decomposition is the following bi-grading:

$$
\mathcal{Y}_{k, \ell}^{(n)}:=\operatorname{span}_{\mathbf{k}}\left\{q \in \overline{\mathcal{Y}_{n}}: \operatorname{deg}(q)=k \quad \operatorname{deg}_{\mathcal{V}}(q)=\ell\right\} .
$$

In fact, this bi-grading can be refined to a third decomposition by signed partitions, which are pairs of partitions $\left(\lambda^{+}, \lambda^{-}\right)$such that $\left|\lambda^{+}\right|+\left|\lambda^{-}\right|=n$.

Definition 3.4. Given a monomial in $q \in \mathbb{Q}\left[u_{i}, v_{i j}, w_{i j}\right]$, associate to q a signed partition $\left.\lambda_{(q)}^{+}, \lambda_{(q)}^{-}\right)$as follows:

1. Construct a graph $\mathcal{G}(q)$ with vertex set $[n]=\{1,2, \cdots, n\}$ by drawing an edge between i and j if $v_{i j}$ or $w_{i j}$ occurs in q, and drawing a loop at i if u_{i} occurs in q;
2. Let $\mathcal{G}_{1}=\left(E_{1}, V_{1}\right), \cdots, \mathcal{G}_{k}=\left(E_{k}, V_{k}\right)$ be the connected components of $\mathcal{G}(q)$. Then

$$
\lambda_{(q)}^{+}:=\left\{\left|V_{\ell}\right|: \mathcal{G}_{\ell} \text { has no loops }\right\} \quad \lambda_{(q)}^{-}:=\left\{\left|V_{\ell}\right|: \mathcal{G}_{\ell} \text { has loops }\right\}
$$

Proposition 3.5. There is a decomposition of $\overline{\mathcal{Y}_{n}}$ by signed partitions $\overline{\mathcal{Y}_{n}}=\bigoplus_{\left(\lambda^{+}, \lambda^{-}\right)} \mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}$, where

$$
\mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}:=\operatorname{span}_{\mathbf{k}}\left\{\text { monomials } q \in \overline{\mathcal{Y}_{n}}:\left(\lambda_{(q)}^{+}, \lambda_{(q)}^{-}\right)=\left(\lambda^{+}, \lambda^{-}\right)\right\} .
$$

This decomposition is compatible with the other decompositions of $\overline{\mathcal{Y}_{n}}$, in the sense that:

$$
\mathcal{Y}_{\mu}^{(n)}=\bigoplus_{\left(\lambda^{+}, \lambda^{-}\right): \lambda^{+}=\mu} \mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)} \quad \mathcal{Y}_{k, \ell}^{(n)}=\bigoplus_{\substack{\left(\lambda^{+}, \lambda^{-}\right): \ell\left(\lambda^{+}\right)=n-k \\ \ell\left(\lambda^{+}\right)+\ell\left(\lambda^{-}\right)=n-\ell}} \mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}
$$

For example, suppose $n=8$ and $q=w_{12} \cdot u_{5} \cdot v_{56} \cdot u_{7} \cdot v_{24}$. Then q is in the bi-graded piece $\mathcal{Y}_{5,3}^{(8)}$ and we have $\lambda_{(q)}^{+}=\{3,1,1\}$ and $\lambda_{(q)}^{-}=\{2,1\}$. Thus $q \in \mathcal{Y}_{((3,1,1),(2,1))}^{(8)} \subset \mathcal{Y}_{(3,1,1)}^{(8)}$.

Theorem 3.6. There is a well-defined, \mathfrak{S}_{n}-equivariant surjection of \mathbf{k}-vector spaces

$$
\begin{aligned}
\gamma: \overline{\mathcal{Y}_{n}} & \longrightarrow \mathcal{X}_{n}=\mathbf{k}\left[u_{i j}\right]_{1 \leq i<j \leq n} /\left\langle u_{i j}^{2}, \quad u_{i j} u_{i k}-u_{i j} u_{j k}+u_{i k} u_{j k}\right\rangle \\
\mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)} & \longmapsto \mathcal{X}_{\left(\lambda^{+}+\lambda^{-}\right)^{\prime}}^{(n)}
\end{aligned}
$$

defined by sending $\quad \gamma\left(u_{i}\right)=1, \quad \gamma\left(w_{i j}\right)=u_{i j} \quad \gamma\left(v_{i j}\right)=u_{i j}$.
Proof idea. The key observation is that the relations $u_{i} w_{i j}-u_{j} v_{i j}$ and $u_{i} v_{i j}-u_{j} w_{i j}$ in $\mathfrak{g r}(\mathcal{I})$ mean that one can give a presentation of $\overline{\mathcal{Y}_{n}}$ as a quotient of a subring of $\mathbf{k}\left[v_{i j}, w_{i j}, u_{i}\right]$, by an ideal $\tilde{\mathcal{I}} \subset \mathfrak{g r}(\mathcal{I})$ that omits the relation u_{i}^{2}. From this, one can define a surjection of vector spaces; note however that γ cannot be extended to a map of algebras.

4 Main Results

At last, we are ready to analyze the peak representations. Our investigations began from an observation of Aguiar, Bergeron and Nyman [1] relating the descent algebras $\operatorname{Sol}\left(\mathfrak{S}_{n}\right)$ and $\operatorname{Sol}\left(\mathfrak{S}_{n}^{ \pm}\right)$to the peak algebra \mathcal{P}_{n}.

Recall that one can express the hyperoctahedral group of all signed permutations as $\mathfrak{S}_{n}^{ \pm}=\mathfrak{S}_{n} \ltimes \mathbb{Z}_{2}^{n}$ where \mathbb{Z}_{2}^{n} is the normal subgroup performing arbitrary sign changes in the coordinates. The quotient map $\mathfrak{S}_{n}^{ \pm} \rightarrow \mathfrak{S}_{n}^{ \pm} / \mathbb{Z}_{2}^{n} \cong \mathfrak{S}_{n}$ of groups, which forgets the signs in a signed permutation, gives rise to a surjective \mathbf{k}-algebra map $\varphi: \mathbf{k} \mathfrak{S}_{n}^{ \pm} \rightarrow \mathbf{k} \mathfrak{S}_{n}$. In [1], it was shown that the peak subalgebra \mathcal{P}_{n} is exactly the image under φ of $\operatorname{Sol}\left(\mathfrak{S}_{n}^{ \pm}\right)$, that is, φ restricts to an algebra surjection $\operatorname{Sol}\left(\mathfrak{S}_{n}^{ \pm}\right) \xrightarrow{\varphi} \mathcal{P}_{n}$.

As a consequence, one can define a family of peak idempotents inside $\mathcal{P}_{n} \subset \mathbf{k} \mathfrak{S}_{n}$ via

$$
E_{k}^{\mathcal{P}_{n}}:=\varphi\left(E_{k}^{\mathfrak{S}_{n}^{ \pm}}\right) \text {for } k=0,1, \cdots, n \quad E_{\mu}^{\mathcal{P}_{n}}:=\varphi\left(E_{\mu}^{\mathfrak{S}_{n}^{ \pm}}\right) \text {for } \mu \vdash m \leq n
$$

Both families inherit from $\left\{E_{k}^{\mathfrak{S}_{n}^{ \pm}}\right\}$and $\left\{E_{\mu}^{\mathfrak{S}_{n}^{ \pm}}\right\}$the property of being a complete system of orthogonal idempotents in $\mathbf{k} \mathfrak{S}_{n}$, and the $\left\{E_{\mu}^{\mathcal{P}_{n}}\right\}$ are also primitive if nonzero. Note that some of the $E_{k}^{\mathcal{P}_{n}}$ and $E_{\mu}^{\mathcal{P}_{n}}$ will be zero, which we characterize in Theorems 1.1 and 4.6. By construction, one recovers $E_{k}^{\mathcal{P}_{n}}$ from the $E_{\mu}^{\mathcal{P}_{n}}$ by summing over all μ of length k.

Our goal is to relate the peak idempotents to the ring $\mathcal{Z}_{n}:=H^{*} Z_{n}$, where

$$
Z_{n}:=Y_{n} / \mathbb{Z}_{2}^{n}=\operatorname{Conf}_{n}\left(\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}\right) / \mathbb{Z}_{2}\right)=\operatorname{Conf}_{n}\left(\mathbb{R P}^{2} \times(0, \infty)\right)
$$

is the configuration space of n ordered points within the quotient $\mathbb{R}^{3} \backslash\{0\}$ under the \mathbb{Z}_{2}-action via $\mathbf{x} \mapsto-\mathbf{x}$, so that $\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}\right) / \mathbb{Z}_{2} \cong \mathbb{R} \mathbb{P}^{2} \times(0, \infty)$.

Note that $\left(\mathcal{Y}_{n}\right)^{\mathbb{Z}_{2}^{n}} \cong \mathcal{Z}_{n}$. The filtration, bigrading, and finer decompositions (by flat orbits and signed partitions) on \mathcal{Y}_{n} from Section 3 persist when one takes \mathbb{Z}_{2}^{n}-fixed spaces, giving a bigraded \mathfrak{S}_{n}-representation on an associated graded ring $\overline{\mathcal{Z}_{n}}$:

$$
\mathcal{Z}_{k, \ell}^{(n)}:=\left(\mathcal{Y}_{k, \ell}^{(n)}\right)^{\mathbb{Z}_{2}^{n}}, \quad \mathcal{Z}_{\mu}^{(n)}:=\left(\mathcal{Y}_{\mu}^{(n)}\right)^{\mathbb{Z}_{2}^{n}}, \quad \mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}:=\left(\mathcal{Y}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}\right)^{\mathbb{Z}_{2}^{n}}
$$

We first construct monomial a basis for \mathcal{Z}_{n}, using the fact that by Theorem 3.2, the basis \mathcal{V} of \mathcal{Y}_{n} diagonalizes the action of the normal subgroup $\mathbb{Z}_{2}^{n} \leq \mathfrak{S}_{n}^{ \pm}$on \mathcal{Y}_{n}.
Definition 4.1. For $1 \leq i<j<k \leq n$, let $\mathcal{I}_{1}:=\left\{u_{i} w_{i j}\right\}, \mathcal{I}_{2}:=\left\{w_{i j} w_{i k}\right\}, \mathcal{I}_{3}:=\left\{v_{i j} w_{j k}\right\}$. Let $\tilde{\mathcal{V}}$ be the monomials obtained from products in \mathcal{I}_{j} for $j=1,2,3$ that are also in \mathcal{V}.
Theorem 4.2. The set $\tilde{\mathcal{V}}$ is a basis for \mathcal{Z}_{n} and $\overline{\mathcal{Z}_{n}}$ that is compatible with the decomposition by signed partitions: $\overline{\mathcal{Z}_{n}}=\bigoplus \mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}$.
Proof idea. We construct a bijection from $\tilde{\mathcal{V}}$ to the monomial basis of \mathcal{X}_{n} from Example 2.1. This involves defining a "pairing lemma" to group quadratic terms appearing in $q \in \tilde{\mathcal{V}}$ and then mapping: $u_{i} w_{i j}$ to $u_{i j}, w_{i j} w_{i k}$ to $u_{i j} u_{i k}$, and $v_{i j} w_{j k}$ to $u_{i j} u_{j k}$.
Example 4.3. The basis for $\mathcal{Z}_{4,2}^{(4)}$ is $\left\{\left(u_{1} w_{12}\right)\left(u_{3} w_{34}\right),\left(u_{1} w_{13}\right)\left(u_{2} w_{24}\right),\left(u_{1} w_{14}\right)\left(u_{2} w_{23}\right)\right\}$.
Given a partition λ of n, recall that $\ell(\lambda)$ is its number of parts and $|\lambda|$ is its size. Let $\operatorname{Odd}(\lambda)($ resp. Even $(\lambda))$ be the partition obtained by taking only the odd (resp. even) parts of λ. We call λ an odd partition if $\operatorname{Odd}(\lambda)=\lambda$ and an even partition if Even $(\lambda)=\lambda$. $\operatorname{Write} \operatorname{odd}(\lambda)=\ell(\operatorname{Odd}(\lambda))$ and $\operatorname{even}(\lambda)=\ell(\operatorname{Even}(\lambda))$.
Theorem 4.4. The space $\mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}$ vanishes unless λ^{+}is an odd partition and λ^{-}is an even partition, while $\mathcal{Z}_{\mu}^{(n)}$ vanishes unless μ is an odd partition and $n-|\mu|$ is even.
Moreover, the map γ restricts to an \mathfrak{S}_{n}-equivariant vector-space isomorphism $\gamma: \mathcal{Z}_{n} \longrightarrow \mathcal{X}_{n}$:

$$
\gamma\left(\mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}\right)=\mathcal{X}_{\left(\lambda^{+} \cup \lambda^{-}\right)}^{(n)} \quad \gamma^{-1}\left(\mathcal{X}_{\lambda}^{(n)}\right)=\mathcal{Z}_{(\operatorname{Odd}(\lambda), \operatorname{Even}(\lambda))}^{(n)}
$$

Thus, for non-vanishing $\mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)}, \mathcal{Z}_{\mu}^{(n)}$, and $\mathcal{Z}_{2 k, \ell^{\prime}}^{(n)}$, there are $\mathfrak{S}_{n^{-}}$-representation isomorphisms

$$
\mathcal{Z}_{\left(\lambda^{+}, \lambda^{-}\right)}^{(n)} \cong \operatorname{Lie}_{\left(\lambda^{+} \cup \lambda^{-}\right)}, \quad \mathcal{Z}_{\mu}^{(n)} \cong \bigoplus_{\lambda: \operatorname{Odd}(\lambda)=\mu} \operatorname{Lie}_{\lambda,} \quad \mathcal{Z}_{2 k, \ell}^{(n)} \cong \bigoplus_{\substack{\lambda: \ell(\lambda)=n-\ell \\ \operatorname{odd}(\lambda)=n-2 k}} \operatorname{Lie}_{\lambda}
$$

Example 4.5. When $n=4$, the non-vanishing pieces $\mathcal{Z}_{\mu}^{(4)}$ are as follows:

$$
\mathcal{Z}_{\varnothing}^{(4)} \cong \operatorname{Lie}_{(2,2)} \oplus \operatorname{Lie}_{(4)} \quad \mathcal{Z}_{(1,1)}^{(4)} \cong \operatorname{Lie}_{(2,1,1)} \quad \mathcal{Z}_{(3,1)}^{(4)} \cong \operatorname{Lie}_{(3,1)} \quad \mathcal{Z}_{(1,1,1,1)}^{(4)} \cong \operatorname{Lie}_{(1,1,1,1)}
$$

The non-vanishing bi-graded pieces $\mathcal{Z}_{2 k, \ell}^{(4)}$ are

$$
\mathcal{Z}_{0,0}^{(4)} \cong \operatorname{Lie}_{(1,1,1,1)} \quad \mathcal{Z}_{2,1}^{(4)} \cong \operatorname{Lie}_{(2,1,1)} \quad \mathcal{Z}_{2,2}^{(4)} \cong \operatorname{Lie}_{(3,1)} \quad \mathcal{Z}_{4,2}^{(4)} \cong \operatorname{Lie}_{(2,2)} \quad \mathcal{Z}_{4,3}^{(4)} \cong \operatorname{Lie}_{(4)}
$$

In fact, we now have all the tools necessary to provide a cohomological interpretation of the \mathfrak{S}_{n}-representations generated by the Peak idempotents, by analyzing the \mathbb{Z}_{2}^{n} fixed spaces of Theorem 2.2 and applying Theorem 4.4.

Theorem 4.6. The idempotent $E_{\mu}^{\mathcal{P}_{n}}$ does not vanish if and only if μ is an odd partition (including $\mu=\varnothing)$ and $n-|\mu|$ is even. In this case, there are \mathfrak{S}_{n}-representation isomorphisms

$$
\left(\mathbf{k} \mathfrak{S}_{n}\right) E_{\mu}^{\mathcal{P}_{n}} \cong \mathcal{Z}_{\mu}^{(n)} \cong \bigoplus_{\lambda: \operatorname{Odd}(\lambda)=\mu} \operatorname{Lie}_{\lambda}
$$

Note that combining Proposition 3.5 with Theorems 4.4 and 4.6 implies Theorem 1.1.

5 Hilbert series and the free Jordan algebra

Having established the connection between the peak algebra and the ring \mathcal{Z}_{n}, we now develop enumerative and recursive properties of the latter.

Let Λ denote the ring of symmetric functions (of bounded degree, in infinitely many variables). It has a \mathbb{Z}-algebra isomorphism known as the Frobenius characteristic map ch : $\oplus_{n \geq 0} \operatorname{Rep}\left(\mathfrak{S}_{n}\right) \rightarrow \Lambda$, where $\operatorname{Rep}\left(\mathfrak{S}_{n}\right)$ are the virtual characters of \mathfrak{S}_{n}. We will study the Frobenius characteristic of $\mathcal{Z}_{2 k, \ell}^{(n)}$, using the fact that $\mathcal{Z}_{2 k+1, \ell}^{(n)}=0$ by Theorem 1.1.
Definition 5.1. Write $\Lambda_{\mathbb{Z}[t, q]}$ to be the ring Λ with coefficients in $\mathbb{Z}[t, q]$ and define
$M_{n}(t, q):=\sum_{k, \ell} \operatorname{dim}\left(\mathcal{Z}_{2 k, \ell}^{(n)}\right) t^{k} q^{\ell} \in \mathbb{Z}[t, q], \quad \mathcal{M}^{(n)}(t, q):=\sum_{k, \ell} \operatorname{ch}\left(\mathcal{Z}_{2 k, \ell}^{(n)}\right) t^{k} q^{\ell} \in \Lambda_{\mathbb{Z}[t, q]}$.
For $w \in \mathfrak{S}_{n}$ let even (w), odd (w) denote the number of even-sized and odd-sized cycles of w, and $\operatorname{cyc}(w)$ the number of cycles of w.

Theorem 5.2. Write $L_{\lambda}:=\operatorname{ch}\left(\operatorname{Lie}_{\lambda}\right)$. Then one can rewrite $M_{n}(t, q)$ and $\mathcal{M}^{(n)}(t, q)$ as follows:

$$
M_{n}(t, q)=\sum_{w \in \mathfrak{S}_{n}} t^{\frac{n-\operatorname{odd}(w)}{2}} q^{n-\operatorname{cyc}(w)}, \quad \mathcal{M}^{(n)}(t, q)=\sum_{\lambda \vdash n} L_{\lambda} \cdot t^{\frac{|\lambda|-\operatorname{odd}(\lambda)}{2}} q^{|\lambda|-\ell(\lambda)} .
$$

Using Theorem 5.2, we manipulate the symmetric functions in $\mathcal{M}^{(n)}(t, q)$ to give a branching rule recurrence for the bi-graded pieces $\mathcal{Z}_{2 k, \ell}^{(n)}$. Let \uparrow denote representation induction from \mathfrak{S}_{n} to \mathfrak{S}_{n+1} and \downarrow denote representation restriction from \mathfrak{S}_{n} to \mathfrak{S}_{n-1}.

Theorem 5.3. The restriction of $\mathcal{Z}_{2 k, j}^{(n)}$ from an \mathfrak{S}_{n} to an \mathfrak{S}_{n-1}-module is given by

$$
\mathcal{Z}_{2 k, \ell}^{(n)} \downarrow=\mathcal{Z}_{2 k, \ell}^{(n-1)}+\mathcal{Z}_{2(k-1), \ell-1}^{(n-2)} \uparrow+\left(\mathcal{Z}_{2(k-1), \ell-2}^{(n-2)} \uparrow\right) * \chi^{(n-2,1)},
$$

where $*$ is the Kronecker product and $\chi^{(n-2,1)}$ is the irreducible reflection representation of \mathfrak{S}_{n-1}. Theorem 5.3 implies a recursive formula for $M_{n}(t, q)$ with interesting specializations:

$$
\begin{align*}
& M_{n}(1, q)=(1+q)(1+2 q) \cdots(1+(n-1) q) \tag{5.1}\\
& M_{n}(t, 1)=(1+(n-1) q) \cdot M_{n-1}(1, q) \tag{5.2}
\end{align*}
$$

where (5.1) is the generating function for the Stirling numbers of the first kind, and (5.2) describes the Sheffer polynomials [15] counting permutations w according to odd (w).

5.1 The space of simple Jordan elements

Finally, we mention an interesting connection between \mathcal{Z}_{n} and the multilinear part of the space of simple Jordan elements within the free associative algebra $\mathbf{k}\langle\mathbf{x}\rangle=\mathbf{k}\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Consider a deformation of the Lie bracket on $\mathbf{k}\langle\mathbf{x}\rangle$ by $\alpha \in \mathbb{C}:[x, y]_{\alpha}:=x y-\alpha y x$. Let J_{α} be the smallest \mathbf{k}-subspace of $\mathbf{k}\langle\mathbf{x}\rangle$ containing the generators \mathbf{x} and closed under $[\cdot, \cdot]_{\alpha}$.

For example, $J_{1} \subset \mathbf{k}\langle\mathbf{x}\rangle$ is the free Lie algebra. Define $V_{n}(\alpha) \subset J_{\alpha}$ to be the \mathbf{k}-subspace spanned by these multilinear bracketings of homogeneous degree n for $w \in \mathfrak{S}_{n}$:

$$
\left.\left[\left[\cdots\left[x_{w(1)}, x_{w(2)}\right]_{\alpha}, x_{w(3)}\right]_{\alpha}, \cdots\right]_{\alpha}, x_{w(n)}\right]_{\alpha}
$$

Then $V_{n}(1) \cong \operatorname{Lie}_{n}$ is the multilinear component of the free Lie algebra, while $V_{n}(-1)$ is the multilinear part of the space of simple Jordan elements. The following was proved by Robbins in [14, §6, Thm. 7] and later in [7, Thm 2.1] by Calderbank-Hanlon-Sundaram:

$$
\begin{equation*}
V_{n}(-1) \cong \bigoplus_{\substack{\lambda \vdash n \\ \operatorname{odd}(\lambda)=\ell(\lambda)}} \operatorname{Lie}_{\lambda} \tag{5.3}
\end{equation*}
$$

We combine Theorem 4.4 and (5.3), to give a cohomological interpretation for $V_{n}(-1)$.
Corollary 5.4. The space $V_{n}(-1)$ is isomorphic as an \mathfrak{S}_{n}-representation to $\bigoplus_{k} \mathcal{Z}_{2 k, 2 k}^{(n)}$.

Acknowledgements

The authors are grateful to Sheila Sundaram for bringing our attention to [7].

References

[1] M. Aguiar, N. Bergeron, and K. Nyman. "The peak algebra and the descent algebras of types B and D". Transactions of the American Mathematical Society 356.7 (2004), pp. 2781-2824.
[2] I Arnol'd Vladimir. "The cohomology ring of the group of dyed braids". Mat. Zametki 5 (1969), pp. 227-231.
[3] H. Barcelo. "On the action of the symmetric group on the free Lie algebra and the partition lattice". Journal of Combinatorial Theory, Series A 55.1 (1990), pp. 93-129.
[4] F. Bergeron and N. Bergeron. "Orthogonal idempotents in the descent algebra of B_{n} and applications". J. Pure Appl. Algebra 79.2 (1992), pp. 109-129. Dor.
[5] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor. "A decomposition of the descent algebra of a finite Coxeter group". Journal of Algebraic Combinatorics 1.1 (1992), pp. 23-44.
[6] S. Brauner. "Eulerian representations for real reflection groups". Journal of the London Mathematical Society 105.1 (2022), pp. 412-444.
[7] A. Calderbank, P Hanlon, and S Sundaram. "Representations of the symmetric group in deformations of the free Lie algebra". Transactions of the American mathematical Society 341.1 (1994), pp. 315-333.
[8] F. R. Cohen, T. J. Lada, and P. J. May. The homology of iterated loop spaces. Springer, 2007.
[9] A. M. Garsia and C. Reutenauer. "A decomposition of Solomon's descent algebra". Advances in Mathematics 77.2 (1989), pp. 189-262.
[10] M. Gerstenhaber and S. D. Schack. "A Hodge-type decomposition for commutative algebra cohomology". J. Pure Appl. Algebra 48.3 (1987), pp. 229-247. Dor.
[11] P. Hanlon. "The action of S_{n} on the components of the Hodge decomposition of Hochschild homology". Michigan Math. J. 37.1 (1990), pp. 105-124. Dor.
[12] D. Moseley. "Equivariant cohomology and the Varchenko-Gelfand filtration". Journal of Algebra 472 (2017), pp. 95-114.
[13] C. Reutenauer. "Free Lie algebras". Handbook of algebra, Vol. 3. Vol. 3. Handb. Algebr. Elsevier/North-Holland, Amsterdam, 2003, pp. 887-903. Doi.
[14] D. P. Robbins. "Jordan elements in a free associative algebra, I". Journal of Algebra 19.3 (1971), pp. 354-378.
[15] N. J. A. Sloane. "The on-line encyclopedia of integer sequences: A060524". 2020. Link.
[16] S. Sundaram and V. Welker. "Group actions on arrangements of linear subspaces and applications to configuration spaces". Transactions of the American Mathematical Society 349.4 (1997), pp. 1389-1420.
[17] R. M. Thrall. "On symmetrized Kronecker powers and the structure of the free Lie ring". Amer. J. Math. 64 (1942), pp. 371-388. Doi.
[18] M. A. Xicoténcatl Merino. "Orbit configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces." PhD Thesis-University of Rochester. (1997).

[^0]: *sarahbrauner@gmail.com. Brauner is supported by the NSF MSPRF DMS 2303060.
 ${ }^{\dagger}$ Reiner is partially supported by NSF grant DMS 2053288.

[^1]: ${ }^{1}$ In fact, one can take coefficients in \mathbb{Z} rather than \mathbf{k}. However, in what follows, we will want \mathbf{k} to be a field with characteristic not dividing 2.

