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Abstract. We survey some recent advances in combinatorial modular representation
theory in type A through the lens of p-Kazhdan–Lusztig theory.

1 Introduction

The diagrammatic Hecke category has provided the intuition and tools necessary to cut
through the most famous conjectures of Lie theory: the Lusztig and Kazhdan–Lusztig
positivity conjectures. These conjectures place the Kazhdan–Lusztig polynomials (asso-
ciated to parabolic Coxeter systems) centre-stage in the (modular) representation theory
of Lie theoretic objects.

Kazhdan–Lusztig polynomials encode a great deal of character-theoretic and indeed
cohomological information about cell modules. We further know that Kazhdan–Lusztig
polynomials often carry information about the radical layers of indecomposable pro-
jective and cell modules. Given the almost ridiculous level of detail these polynomials
encode, it is natural to ask “what are the limits to what p-Kazhdan–Lusztig combinatorics can
tell us about the structure of the Hecke category?"

The family of ordinary Kazhdan–Lusztig polynomials which are combinatorially best
understood are those for maximal parabolics of finite symmetric groups Sm × Sn ⩽
Sm+n. These polynomials can be calculated in terms of the combinatorics of Dyck tilings
[9]. The starting point of this project was to extend this to the modular case by proving
that the p-Kazhdan–Lusztig polynomials of Sm ×Sn ⩽ Sm+n are entirely independent
of p ⩾ 0. We also find that there is a wealth of extra, richer combinatorial informa-
tion which can be encoded into the Dyck tilings. Instead of looking only at the sets of
Dyck tilings (which enumerate these Kazhdan–Lusztig polynomials) we look at the re-
lationships for passing between these Dyck tilings. In fact, this “meta-Kazhdan–Lusztig
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combinatorics" is sufficiently rich as to completely determine the full structure of our
Hecke categories. In this extended abstract, we discuss how this allows us to provide
a complete combinatorial description of the submodule lattices of the cell modules for
these categories.

We also proved in [2] that the Hecke categories of Sm ×Sn ⩽ Sm+n control the struc-
ture of parabolic Verma modules for Lie algebras [4, 8, 9]; the representation category of
the general linear supergroups [3]; arc algebras from categorified knot theory [5]; walled
Brauer algebras [6]; and the combinatorics of attracting cells for torus fixed points in
Springer fibers [11]. This makes the cell modules of these categories some of the most
well-understood representations in all of non-semisimple Lie theory.

2 Kazhdan–Lusztig polynomials

Let (W, SW) be a Coxeter system: W is the group generated by the finite set SW subject
to the relations (στ)mστ = 1 for σ, τ ∈ SW , mστ ∈ N ∪ {∞} satisfying mστ = mτσ, and
mστ = 1 if and only if σ = τ. Let ℓ : W → N be the corresponding length function.
Consider SP ⊆ SW a subset and (P, SP) its corresponding Coxeter system. We say that
P is the parabolic subgroup corresponding to SP ⊆ SW . Let PW ⊆ W denote a set of
minimal coset representatives in P\W. For w = σ1σ2 · · · σℓ an expression, we define a
subword to be a sequence t = (t1, t2, . . . , tℓ) ∈ {0, 1}ℓ and set wt := σt1

1 σt2
2 · · · σ

tℓ
ℓ . We let

⩽ denote the strong Bruhat order on PW: namely y ⩽ w if for some reduced expression
w there exists a subword t and a reduced expression y such that wt = y. We denote
the Hasse diagram of this poset by G(W,P) and we refer to it as the Bruhat graph of the
pair (W, P). Explicitly, the vertices of G(W,P) are labelled by the elements of PW and for
λ ∈ PW we have a directed edge λ → λsi if λ < λsi ∈ PW for some si ∈ SW . We denote
by ∅ (for the empty word in the generators) the minimal coset representative for the
identity coset P.

We define the extended Bruhat graph Ĝ(W,P) to be the directed graph having the same
set of vertices as G(W,P) but replacing each edge in G(W,P) between λ and λsi for λ < λsi
by four “up" and “down" directed edges

λ
i−→ λsi, λ

i−→ λ, λsi
i−→ λ λsi

i−→ λsi, (2.1)

which we denote U1
i , U0

i , D1
i , D0

i respectively. We assign a degree to each edge in Ĝ(W,P)
by setting

deg(λ i−→ λsi) = deg(λsi
i−→ λ) = 0 deg(λ i−→ λ) =

{
1 if λsi > λ

−1 if λsi < λ



Dyck combinatorics in p-Kazhdan–Lusztig theory 3

s2s3s1s2

∅

s2

s2s3s2s1

s2s3s1

∅

s2

s2s3s2s1

s2s3s1 s2s3s4

s2s3s4s1s2s3s1s2

s2s3s4s1s2

s2s3s4s1s2s3

Figure 1: The graph G(W,P) for (W, P) = (S4,S2 ×S2) and (S5,S2 ×S3) respectively.

Given a path (or “Bruhat stroll") on Ĝ(W,P)

T : λ1
i1−→ λ2

i2−→ λ3
i3−→ . . .

ik−1−−→ λk,

we say that the degree deg(T) is the sum of the degrees of each edge in T. (The degree is
also sometimes known as the “Deodhar defect".) We also define the weight of T, denoted
by w(T) to be the expression

w(T) := si1si2si3 . . . sik−1 .

Given λ ∈ PW, we let Path(λ) denote the set of all paths from ∅ and ending at λ in the
extended Bruhat graph.

Definition 2.1. We say that a path T ∈ Path(µ) is reduced if it is a path of shortest possible
length from ∅ to µ.

Throughout the paper we will fix one reduced path, Tµ ∈ Path(µ), for each µ ∈ PW.
For a fixed λ, we denote the set of all paths T ∈ Path(λ) with w(T) = Tµ by Path(λ,Tµ).

Examples are given in Figure 2.
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Definition 2.2. Given (W, P) a parabolic Coxeter system, we define the matrix of light-
leaves polynomials

∆(W,P) := (∆λ,µ(q))λ,µ∈PW ∆λ,µ(q) = ∑
S∈Path(λ,Tµ)

qdeg(S)

which is a (square) lower uni-triangular matrix. This matrix can be factorised uniquely
as a product of lower uni-triangular matrices

N(W,P) := (nλ,ν(q))λ,ν∈PW B(W,P) := (bν,µ(q))ν,µ∈PW

such that nλ,ν(q) ∈ qZ[q] for λ ̸= ν and bν,µ(q) ∈ Z[q + q−1]. The polynomials nλ,ν(q)
are the anti-spherical Kazhdan–Lusztig polynomials of (W, P).

α

β

Figure 2: On the left we depict a path Tα and on the right we depict the unique element
S ∈ Path(β,Tα) for α = s2s3s4s1s2s3 and β = s2s1. These are paths on Ĝ(S5,S2×S3) (also
known as “Bruhat strolls") but we depict only the edges in G(S5,S2×S3) (for readability).

Example 2.3. The matrix ∆k in type (S4,S2 ×S2) is depicted below.

∆k s2s1s3s2 s2s1s3 s2s1 s2s3 s2 ∅
s2s1s3s2 1 · · · · ·

s2s1s3 q 1 · · · ·
s2s1 · q 1 · · ·
s2s3 · q · 1 · ·

s2 q q2 q q 1 ·
∅ q2 · · · q 1
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The factorisation of this matrix is trivial, with N = ∆k and B = Id6×6 the identity matrix.

The Hecke category (over the complex field) gives a categorification of this matrix
factorisation.

3 Hecke categories and p-Kazhdan–Lusztig polynomials

Hecke categories provide the interface between Lie theory and Kazhdan–Lusztig theory.
We begin by lifting the “folded paths" of the previous section to provide (what will be)
a basis of the Hom-spaces of the Hecke category.

In this section, we will only explicitly discuss the generators and relations for H(W,P),
the category algebra of the Hecke category, when W = Sn+m is a finite symmetric
group and P is a maximal parabolic P = Sm × Sn, as this simplifies the definitions
considerably, whilst still illustrating the important points of the general case. We define
the Soergel generators to be the framed graphs

1∅ = 1σ = spot∅
σ = forkσ

σσ = braidτσ
στ =

associated to any pair σ, τ ∈ SW with mστ = 2. We define the northern/southern read-
ing word of any diagram obtained from horizontal and vertical concatenation of Soergel
generators to be the word in the alphabet SW which records the colours along the north-
ern/southern edge of the frame respectively. We let ⊗ to be horizontal concatenation
of diagrams, the algebra multiplication ◦ will be given by vertical concatenation in the
usual manner for diagram algebras. We let ∗ denote the anti-involution which flips a
diagram through the horizontal axis.

Definition 3.1. We define up and down operators on diagrams as follows

◦ Suppose that D has northern colour sequence Tλ with λσ > λ. We define

U1
σ(D) = D U0

σ(D) = D

◦ Now suppose that D has northern colour sequence Tλ ⊗ σ with λσ > λ. We define

D0
σ(D) =

D

1Tλ

D1
σ(D) =

D

1Tλ

.
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We do not emphasise the braids in our construction/notation since it will not matter if
we pre- or post-multiply (at any stage of this construction) with a braid generator.

Definition 3.2. For S ∈ Path(λ) we construct a Soergel diagram by performing the up
and down operators of Definition 3.1 as we encounter any of the four up/down steps in
the path. We denote the resulting diagram by cS. The Soergel diagram corresponding to
the path on the right hand side of Figure 2 is given below.

cS =

U1U1 U1 U0U1 U1 U0 U1U1 U1 U0 U0 D1

Definition 3.3. (B.-D.-H.-N. [1], Libedinsky–Williamson [10]) Let (W, P) = (Sn+m,Sn ×
Sm). The algebra H(W,P) has a graded cellular basis given by {c∗ScT : S,T ∈ Path(λ), λ ∈
Pm,n} with deg(c∗ScT) = deg(S) + deg(T) with respect to the poset (Pm,n,⩽) and the
anti-involution ∗. The multiplication is given by vertical concatenation subject to the
following local relations together with their horizontal and vertical flips:

= = = 0 = 2 −

and for mστ = 3 we have the 2-colour barbell relation,

= − +

and for mστ = 3 and mτρ = 2 we have the Temperley–Lieb relations,

= − =

and for mτρ = mτπ = mρπ = 2 the commutativity relations,

= = =
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Finally, we have the non-local cyclotomic relations,

⊗ 1w = 0 ⊗ 1w = 0

for σ ∈ SW , τ ∈ SP, and w an arbitrary word for some w ∈ W.

The following theorems will hold true in the setting of arbitrary parabolic Coxeter
systems (W, P). Thus we state them in that language (lifting the combinatorics from
Section 2) despite the fact that we have only provided the (much simplified!) relations
of the case (W, P) = (Sn+m,Sn ×Sm).

For λ ∈ PW we let H <λ
(W,P) denote the span of all diagrams c∗ScT with S,T ∈ Path(µ)

with µ < λ.

Theorem 3.4 (The light leaves basis [10]). For each λ ∈ PW the graded cell module ∆k(λ)

has a basis given by
{cS +H <λ

(W,P) | S ∈ Path(λ)}

This module has a unique proper maximal submodule, rad(∆k(λ)), with simple quotient

Lk(λ) = ∆k(λ)/rad(∆k(λ))

Moreover, the set {Lk(λ)⟨k⟩ | λ ∈ PW, k ∈ Z} provides a complete set of pairwise non-
isomorphic graded simple modules for H(W,P).

Theorem 3.5 (The Kazhdan–Lusztig positivity conjecture, Elias–Williamson [7]). Let k be
a field of characteristic p ⩾ 0. The p-Kazhdan–Lusztig polynomials are defined to be the graded
composition factor multiplicities

pnλ,µ(q) = ∑
k∈Z

[∆k(λ) : Lk(µ)⟨k⟩]qk.

For p = 0 we have that the pnλ,µ(q) specialise to the classical Kazhdan–Lusztig polynomials of
Section 2 and thus the classical Kazhdan–Lusztig polynomials have non-negative coefficients.

4 Partitions and their Dyck combinatorics

Formally, a partition λ of ℓ is defined to be a weakly decreasing sequence of non-negative
integers λ = (λ1, λ2, . . .) which sum to ℓ. We call ℓ(λ) := ℓ = ∑i λi the length of the
partition λ. We define the Young diagram of a partition to be the collection of tiles

[λ] = {[r, c] | 1 ⩽ c ⩽ λr}
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depicted in Russian style with rows at 135◦ and columns at 45◦ (as in Figure 3). We
identify a partition with its Young diagram and we write λ ⊆ µ if every box of λ is
contained in µ (that is λi ⩽ µi for all i ⩾ 1). We let λt denote the transpose partition given
by reflection of the Russian Young diagram through the vertical axis. Given m, n ∈ N

we let Pm,n denote the set of all partitions which fit into an m × n rectangle, that is

Pm,n = {λ | λ1 ⩽ m, λt
1 ⩽ n}.

For λ ∈ Pm,n, the x-coordinate of a tile [r, c] ∈ λ is equal to r − c + m ∈ {1, 2, . . . , m + n}
and we define this x-coordinate to be the “colour" or “content" of the tile and we write
cont[r, c] = r − c + m. It is well-known that a partition is uniquely determined by the
contents of its boxes and this can be seen as the main ingredient in the following result:

Proposition 4.1. For (W, P) = (Sn+m,Sn × Sm) there is a poset isomorphism between
(PW,⩽) (the minimal coset representatives under the Bruhat ordering) and (Pm,n,⩽) (the par-
titions in an (m × n)-rectangle ordered by inclusion), sending the identity coset to ∅ and the
longest element to (mn) (see Figures 1 and 3).

S2 ×S3 ⩽ S5

Figure 3: The partitions in a (2 × 3)-rectangle, ordered by inclusion. At the bottom we
depict the empty partition inside a (2 × 3)-grid and at the top we depict the unique
partition of maximal size, namely the rectangle (23). Compare this poset with the
rightmost poset depicted in Figure 1.

Having encoded the Bruhat order in terms of partition combinatorics, we ask whether
it is possible compute the Kazhdan–Lusztig polynomials in a similar fashion. The answer
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is yes, and makes use of the idea of Dyck paths. We define a path on λ to be a finite
non-empty set P of tiles that are ordered [r1, c1] ∈ λ, . . . , [rs, cs] ∈ λ for some s ⩾ 1 such
that for each 1 ⩽ i ⩽ s − 1 we have [ri+1, ci+1] = [ri + 1, ci] or [ri, ci − 1]. Note that the set
cont(P) of contents of the tiles in a path P form an interval of integers. We say that P is
a Dyck path if

min{ri + ci : 1 ⩽ i ⩽ s} = r1 + c1 = rs + cs,

that is the minimal height of the path is achieved at the start and end of the path, see
the leftmost diagram in Figure 4 for an example of a single Dyck path on a partition.
We say that P and Q are adjacent if and only if the multiset given by the disjoint union
cont(P) ⊔ cont(Q) is an interval (see the central diagram in Figure 4 for an example).

Definition 4.2. Let λ ⊆ µ ∈ Pm,n. A Dyck tiling of the skew partition µ \ λ is a set
{P1, . . . , Pk} of Dyck paths such that

µ \ λ =
k⊔

i=1

Pi

and for each i ̸= j we have Pi and Pj are not adjacent. If such a Dyck tiling exists, we
call (λ, µ) a Dyck pair. Dyck tilings for a given µ \ λ are not unique. However, it can be
shown that if we have two Dyck tilings µ \ λ = ⊔k

i=1Pi = ⊔l
j=1Qj then we must have k = l

and there is a bijection {Pi} → {Qji} satisfying cont(Pi) = cont(Qji) for all 1 ⩽ i ⩽ k.
Thus it makes sense to define the degree of the Dyck pair (λ, µ) to be deg(λ, µ) = k.

Figure 4: On the left we depict a Dyck path on (96, 63). The centre diagram depicts
two adjacent Dyck paths (and so (96, 63) \ (92, 83, 53, 3) does not admit a Dyck tiling).
On the right we depict a Dyck tiling of (96, 63) \ (9, 7, 6, 5, 4, 2, 12) of degree 6.

We are now ready to provide a closed combinatorial interpretation for the p-Kazhdan–
Lusztig polynomials of (Sn+m,Sn ×Sm). This generalises existing results of Lascoux–
Schutzenberger to arbitrary fields.
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Theorem 4.3 (B.–D.–H.–Norton [1]). Let (W, P) = (Sn+m,Sn ×Sm) and p ⩾ 0. We have
that

pnλ,µ(q) =

{
qdeg(λ,µ) if (λ, µ) is a Dyck pair;

0 otherwise.

Proof. By Definition 3.3 we know that H(W,P) has basis indexed by pairs of paths in the
weak Bruhat graph of PW. In [1] we provide a graded bijection between Path(λ,Tµ)

and Dyck tilings of shape µ \ λ. Any Dyck tiling µ \ λ is manifestly of positive degree,
unless λ = µ in which case we obtain a unique (trivial) Dyck tableau of degree zero.
Now, since any graded simple module is fixed by the anti-involution ∗ we deduce that
it must have graded dimension belonging to Z⩾0[q + q−1]. Putting together the above
facts, we deduce that the simple modules are 1-dimensional (concentrated in degree
zero) regardless of the characteristic of the field and the result follows.

5 Submodule lattices of cell modules

We are now ready to discuss one of the main results of [2]. Namely, we will provide the
full submodule lattice of the cell modules for H(W,P) when (W, P) = (Sn+m,Sn ×Sm)

over any field k. We prove in [2] that (the basic algebra of) H(W,P) is generated in
degrees 0 and 1 and hence the grading gives a submodule filtration of ∆k(λ). Thus to
determine whether there is an extension between two composition factors Lk(µ) and
Lk(ν) within ∆k(λ) (where (λ, µ) and (λ, ν) are Dyck pairs, by Theorem 4.3) it is enough
to consider pairs of adjacent degree , that is where deg(λ, ν) = deg(λ, µ) + 1. Using
the presentations of [2, Theorem B] we are able to fully determine these extensions
combinatorially as follows:

Definition 5.1. Let (λ, µ) and (λ, ν) be Dyck pairs of degree k and k + 1 respectively. We
write (λ, µ) → (λ, ν) if either:

◦ ν is obtained from µ by adding a Dyck path.

−−→

◦ ν is obtained from µ by removing a Dyck path, splitting some Dyck path in the
tiling of µ \ λ into two distinct Dyck paths:

−−→ or or
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We extend this to a partial ordering, ≺, by taking the transitive closure of →.

Figure 5: The submodule lattice of ∆k(2, 1) for m = n = 3.

An example of the lattice on ∆k(λ) for λ = (2, 1) and m = n = 3 is depicted in
Figure 5. With a little more work, one can prove that there is a unique Dyck pair (λ, α) of
maximal degree (and that the submodule lattice is a bonafide lattice in the combinatorial
sense!). Indeed we have the following:

Theorem 5.2 (B.-D.-H.-S. [2]). Fix λ ∈ PW for (W, P) = (Sn+m,Sn ×Sm). The module
∆k(λ) has a unique simple submodule, it is rigid (its socle and radical layers coincide) and the
full submodule lattice of ∆(λ) is given by the partial ordering ≺.

Proof. We first provide a full quiver and relations presentation of H(W,P) and then use
this to analyse the submodule structures of ∆k(λ). For example let µ = (32, 1) as in the
leftmost vertex of the penultimate layer of the module of the module ∆k(2, 1) depicted in
Figure 5. The composition factor Lk(32, 1) has three distinct paths leading into it; these
come from the simple modules labelled by (32), (32, 2), and (2, 12) respectively. These
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three paths can be seen to be equal using the fork-spot relations as follows:

= =

The remaining cases also follow by fork-spot relations, but with a little more thought
required. One must then show that these relations are exhaustive — this requires the
full quiver and relations presentation of H(W,P) alluded to above.
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