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Abstract. Boundary algebras are an important tool in the categorification, by Jensen–
King–Su and by Pressland, of cluster structures on positroid varieties, defined by Scott
and by Galashin–Lam. Each connected positroid has a corresponding boundary alge-
bra. We give a combinatorial way to recover a positroid from its boundary algebra.
We then describe the set of algebras which arise as the boundary algebra of some
positroid. Finally, we give the first complete description of the minimal relations in the
boundary algebra. We expect this description to be helpful in extending results known
for Grassmannian boundary algebras to more general settings.

Keywords: Categorification, Positroids, Cluster Algebras

1 Introduction

An open positroid variety, defined by Knutson–Lam–Speyer [8], is the variety of points in
the Grassmannian realizing a given positroid. They broaden the positroid stratification
of the nonnegative Grassmannian [11] to the full Grassmannian. As conjectured in [10,
9] and proven in [14, 15, 6], the coordinate ring of an open positroid variety has the
structure of a cluster algebra. Such a cluster structure is a combinatorially rich algebraic
structure that in particular interacts well with nonnegativity [5]. For instance, the posi-
tivity of the cluster variables in a single cluster is enough to guarantee the positivity of
all the other, possibly infinitely many, cluster variables.

Boundary algebras appear in the context of categorification of the cluster structure on
an open positroid variety. Categorification is a process by which structures from other
areas of math are realized using category theory, often through module categories. In
2006, Scott [14] showed that the Grassmannian has a cluster structure, which was cate-
gorified by Jensen–King–Su [7] as the category of Gorenstein-projective modules over the
circle algebra. In 2016, Baur–King–Marsh [4] connected this with dimer models by realiz-
ing the circle algebra as a completed boundary algebra of a Grassmannian dimer model.
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Pressland [12] extended this setup in 2022 by showing that the cluster structure defined
by Galashin–Lam on an arbitrary connected positroid variety [6] is categorified by the
Gorenstein-projective category of the completed boundary algebra of an appropriate
dimer model.

This categorification has proven useful in understanding the Galashin–Lam clus-
ter structure on positroid varieties. Pressland [13] used it to prove a conjecture of
Muller–Speyer that two a priori different cluster are closely related [10]. In particular,
he shows that the source-labelled and target-labelled cluster structures on a positroid
variety quasi-coincide. Much work is being done on the cluster structures on Grass-
mannians, including studying the Gorenstein-projective modules over the circle algebra
corresponding to rank 2 and 3 cluster variables [2, 3]. This work is difficult to extend to
all positroid varieties because there is no generators-and-relations description in the liter-
ature for boundary algebras of general positroid varieties. Forthcoming work of the first
author and Khrystyna Serhiyenko contains a combinatorial construction of the boundary
algebra, but only describes the relations up to an operation called cancellative closure. We
build on this construction and give a combinatorial description of the boundary algebra
of a connected positroid variety, including a minimal set of relations. We isolate com-
binatorial data which determines the boundary algebra, and call it a boundary chart.
We characterize boundary charts of connected positroids and provide an explicit bijec-
tion between realizable boundary charts and connected positroids. This gives us a new
cryptomorphism of connected positroids.

Our new description of boundary algebras gives additional tools for studying the
Gorenstein-projective modules over these algebras. We expect our results to be useful
in generalizing the work mentioned above from the Grassmannian setting to general
positroid varieties.

2 Background

2.1 Positroids

A positroid is a special type of realizable matroid which reflects the combinatorial struc-
ture of the totally nonnegative Grassmannian. See [11] for background on positroids. In
this section, we introduce perfect orientations and decorated permutations, which are two of
many equivalent descriptions of positroids.

Definition 2.1. A plabic graph (planar bi-colored graph) is an undirected planar graph embed-
ded in a disc with n vertices on the boundary, labelled bi for i ∈ [n] in clockwise order. Plabic
graphs may have additional vertices in the interior of the disc which are each assigned one of two
colors, either white ( ) or black ( ). Boundary vertices must be incident to exactly one edge. We
consider plabic graphs modulo homotopy.
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There are moves and reductions that can be applied to plabic graphs which preserve
the key combinatorial properties we are interested in. Using these, we may, and will, as-
sume that our plabic graphs are bipartite (for this purpose, we ignore boundary vertices)
and reduced [11, Def. 12.5]. An example of such a graph is illustrated in Figure 1.

We may define positroids in terms of perfect orientations of plabic graphs. These are
orientations O of the edges of the plabic graph such that each white internal vertex
is incident to exactly one incoming edge and each black internal vertex is incident to
exactly one outgoing edge. The source set of O is then {i | bi is a source in O}. Fix a
plabic graph G on n boundary vertices. All perfect orientations have source sets of the
same size k. We say such a plabic graph is of type (k, n). The set consisting of the source
sets of all perfect orientations forms a positroid P(G) of rank k on [n] [11].

Move equivalent plabic graphs give the same positroid. One way to distinguish
move equivalence classes of plabic graphs is by using their trip permutations. These are
permutations π defined as follow: For each i ∈ [n], construct a trip which starts from bi
and follow the edges of the plabic graph according to the "rules of the road": At each
white vertex turn right, and at each black vertex turn left. This trip will end at some
boundary vertex bj and we define π(i) = j. We obtain a fixed point π(i) = i if and
only if bi is connected by a single edge to a leaf. At fixed points, we additionally keep
track of the color of this leaf. With this additional data, we refer to π as a decorated
permutation. Decorated permutations of [n] are in bijection with positroids on [n]. We
denote by Pπ the positroid corresponding to a decorated permutation π. In this abstract,
we will be primarily concerned with connected positroids, in which case the decorated
permutations are stabilized-interval-free permutations [1]. These have no fixed points and
so, in particular, are undecorated permutations.

Consider Grk,n, the Grassmannian of k-planes in Cn, embedded in CP(n
k)−1 by Plücker

coordinates ∆I , where I is a k-element subset of [n]. To define open positroid varieties, we
will need to label faces F of a plabic graph G of type (k, n) by the set of i ∈ [n] such that
F lies to the left of the trip terminating at i. One can show that each such label will have
size k and, if P(G) = P(G′), then the boundary faces of G and G′ will have the same
labels [10].

Definition 2.2. Fix a positroid P of rank k on [n]. Let G be a reduced plabic graph such that
P = P(G). Label the faces of G as above. The open positroid variety Π◦

P is the subset of Grk,n
where ∆I = 0 for all I /∈ P and ∆I ̸= 0 for all I which label a boundary face of G.

Finally, we construct the quiver of a plabic graph.

Definition 2.3. A quiver Q = (Q0, Q1) is a directed graph with vertices Q0 and arrows Q1,
with no loops or oriented 2-cycles. Some vertices F0 ⊂ Q0 may be marked as frozen.

For a bipartite plabic graph G, define the quiver Q(G) as follows: Place a vertex at
each internal face of the plabic graph. Faces incident to the boundary contain frozen
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Figure 1: A plabic graph on 5 boundary vertices, with its quiver indicated in red,
where frozen vertices are squares and unfrozen vertices are circles. The decorated
permutation, obtained by following the rules of the road, is π = 45123.

vertices. For each edge e of G which is incident to a white vertex, add an arrow α to the
quiver between the faces on either side of e such that the white endpoint of e is to the
right of α. The only other edges of G are those which connect boundary vertices to black
vertices. In this case, add an arrow α such that the black vertex is to the left of α. The
quiver of a plabic graph is illustrated in Figure 1.

Galashin and Lam have shown that the coordinate ring of an open positroid variety
Π◦

P(G) is isomorphic to the cluster algebra with quiver Q(G) [6].

2.2 Boundary Algebras

We now introduce the boundary algebra, which is important for the categorification of the
cluster structure on an open positroid variety introduced by Pressland [12].

Definition 2.4. For a quiver Q, the path algebra CQ is spanned by finite paths in Q, including
empty paths at each vertex. The product in the algebra between paths p and q is the concatenation
of p and q, if p ends at the start of q, and 0 otherwise.

Fix a stabilized-interval-free permutation π. Let G be any plabic graph with trip
permutation π, and let Q = Q(G). Each internal face of Q is bounded by an oriented
cycle. Each edge d not between two frozen boundary vertices is incident to two faces
and thus part of oriented cycles c+d and c−d bounding those faces. Say c+d factors as dp+d
and c−d factors as dp−d . Let ei be the empty path at the boundary vertex vi of Q(G), and
let e = ∑n

i=1 ei.

Definition 2.5. The dimer algebra AQ is CQ modulo the relations p+d = p−d for all edges d of
Q which are not between two frozen vertices.

Definition 2.6. The boundary algebra of the positroid Pπ is Bπ = eAQ(G)e for any G such
that P = P(G).

It is not obvious, but if P(G) = P(G′), then eAQ(G)e = eAQ(G′)e, so this is well
defined. Multiplication by e on both sides discards each path which neither originates
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from nor terminates at a boundary vertex. Thus, Bπ can be thought of as the algebra of
paths between boundary vertices, modulo the relations p+d = p−d .

We define the following elements of Bπ: For each i ∈ [n], let xi be a minimal path
from vi to vi+1 and let yi be a minimal path from vi+1 to vi, where all indices are taken
modulo n. Let x = ∑n

i=1 xi and y = ∑n
i=1 yi. Let t = xy; then t is central in Bπ. Let p be a

path in Bπ between two nonadjacent vertices. Define τ(p) and η(p) by the condition that
p is directed from vτ(p) to vη(p). Suppose p does not factor as a product of other paths.
We then say p is a nonadjacent arrow and define reachp = η(p)− τ(p) taken modulo n
so that reachp ∈ [n]. One can show that p satisfies ptXp = xτ(p)xτ(p)+1 · · · xη(p)−1 for a
suitable positive integer Xp. We represent the boundary algebra by putting the vertices vi
in clockwise order around a circle and drawing in the nonadjacent arrows. For example,
the second subfigure of Figure 2 shows the representation of a boundary algebra. with a
nonadjacent arrow from v4 to v1 in black. In this figure, the arrows xi and yi are shown
in gray.

In forthcoming work, the first author and Khrystyna Serhiyenko prove the following
two results showing how to calculate the boundary algebra Bπ directly from a stabilized-
interval-free permutation π. In order to state these results, we must represent the per-
mutation π as a directed graph on vertices wi with directed edges from wi to wπ(i)
for i ∈ [n]. We will draw the permutation graph such that wi lies between vertices vi
and vi+1. We refer to edges of the permutation graph as strands. Figure 2 shows three
examples of permutation graphs, in red.

Definition 2.7. For i ∈ [n], we define the i-shifted linear order <i on [n] by i <i i + 1 <i
· · · <i n <i 1 <i · · · <i i − 1. We say (a1 ≤ · · · ≤ am) ∈ [n]m is a cyclic ordering if there
exists some i ∈ [n] such that a1 ≤i a2 ≤i · · · ≤i am. We will allow ourselves to replace some or
all of the inequalities with strict inequalities if consecutive terms are not allowed to be equal.

Definition 2.8. Define [i, j] = {l | (i ≤ l ≤ j) is a clockwise ordering} to be the (closed)
clockwise interval between i and j. We similarly define the clockwise intervals (vi, vj], [vi, vj),
and (vi, vj) by excluding one or both of the endpoints.

Definition 2.9. Let vj be a boundary vertex of Q. Consider a strand α from r to π(r) in the
permutation graph of π. We say that vj is to the right of α if j ∈ [π(r), r) and otherwise vj
is to the left of α. Let p be an arrow between nonadjacent vertices vi and vj. We say that α is
left-supporting to p if (π(r) ≤ r ≤ η(p) ≤ τ(p)) is a cyclic ordering. We say that the strand
α is right-supporting to p if (r ≤ π(r) ≤ τ(p) ≤ η(p)) is a cyclic ordering. In either case, we
say that this strand is supporting to p.

Informally, a strand left (resp. right) supports an arrow p if it points in the opposite
direction of p and lies to its left (resp. right).

Theorem 2.10. Fix a connected positroid P with permutation π. Fix distinct nonadjacent
boundary vertices vi and vj. The arrow p from vi to vj is a nonadjacet arrow of Bπ if and only if
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1. for all l ∈ (j, i), there is a right-supporting strand α of p with vl to its left, and

2. for all l ∈ (i, j), there is a left-supporting strand α of p with vl to its right.

In this case, the relations ptXp = xixi+1 · · · xj−1 and ptYp = yi−1yi−2 · · · yj hold in Bπ, where
Xp is the number of left-supporting strands and Yp is the number of right-supporting strands of
p. We call Xp the left relation number of p, and we call Yp the right relation number of p.

Definition 2.11. An ideal I of a path algebra CQ (generated by commutation relations) is can-
cellative if, for any a, p, q, b ∈ I with η(a) = τ(p) = τ(q) and η(p) = η(q) = τ(b), we have
apb − aqb ∈ I ⇐⇒ p − q ∈ I. The cancellative closure of an ideal I, denoted CancClos(I),
is the smallest cancellative ideal containing I.

Theorem 2.12. Let Q◦
π be the quiver on vi, for i ∈ [n], whose arrows are xi, yi and the nonadja-

cent arrows of Bπ. Let I◦π be the cancellative closure of the ideal I generated by the relations given
in Theorem 2.10, the relations xy − yx and xk − yn−k:

I◦π = CancClos

(〈
xy − yx, xk − yn−k, ∑

p nonadjacent arrow
ptXp − xτ(p)xτ(p)+1 · · · xη(p)−1

〉)
.

Then Bπ ≡ CQ◦
π/I◦π.

Together, Theorem 2.10 and Theorem 2.12 give a way to calculate the boundary al-
gebra of a positroid from its decorated permutation. However, this is obfuscated by the
necessity of taking a cancellative closure. We address this in Section 3.3.

Example 2.13. Let π be the permutation depicted in the middle of Figure 2. We see that there
is an arrow p from v1 to v4. Since p has one left-supporting strand (from 6 to 4) and one right-
supporting strand (from 1 to 3), it is labelled with Xp : Yp = 1 : 1. By Theorem 2.12, the
boundary algebra is Bπ

∼= CQ◦
π/I◦π, where the arrows of Q◦

π are p along with the greyed-out
arrows (representing xi and yi) and the ideal I◦π is generated up to cancellative closure by

{xy − yx, xk − yn−k, pt − x4x5x6}.

3 Combinatorial construction of the boundary algebra

3.1 From Boundary Algebras to Permutations

Our work involves a new combinatorial object, which we call a boundary chart.

Definition 3.1. A boundary chart consists of data C = (k, n, S, X) as follows, where k and n
are integers satisfying 1 ≤ k ≤ n and S is a set of arrows on vertices vi, for i ∈ [n], such that
arrows are not between vi and vi±1, with indices taken cyclically, and there is at most one arrow
from vi to vj for any i, j ∈ [n]. Finally, X ∈ Z

|S|
>0 gives a positive integer for each arrow.
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Figure 2: Three boundary charts on six vertices with k = 3 and their corresponding
decorated permutations depicted in red. The arrows xi and yi are greyed out. For
clarity, we use a red i in place of wi and a black i in place of vi.

Given a positroid, the boundary chart is precisely the data determined in Theo-
rem 2.10. Here, we start with a connected positroid of rank k on [n] with permutation
π, and the set S consists of the nonadjacent arrows of Bπ. The numbers Xp are as in
the theorem. Observe that it is implicit in Theorem 2.10 that there is at most one arrow
between any two vertices. By Theorem 2.12, this information fully determines Bπ.

Definition 3.2. A boundary chart is realizable if it is obtained from a positroid via this process.

We introduce the following auxiliary piece of data for a boundary chart: Let Y ∈ Z
|S|
>0

be a vector of positive integers, indexed by the arrows in S, such that Yp = Xp + k −
reachp for each p ∈ S. Using xy = yx and xk = yn−k from Theorem 2.12, one can show
that the Yp here coincide with the Yp in Theorem 2.10.

We represent the data in a boundary chart by placing the vertices vi around a circle,
in clockwise order. We draw in the arrows and mark each arrow p ∈ S with the pair of
integers (Xp : Yp). We refer to these as the left and right relation numbers of p, respec-
tively. Note that knowing Xp and Yp suffices to recover k when the set S of nonadjacent
arrows is nonempty. Three examples are illustrated in black in Figure 2 (the red and grey
parts are not in the boundary chart). For the realizable boundary chart obtained from
P = Pπ, this coincides with the representation of Bπ described in section Section 2.2.
We will need the following terminology:

Definition 3.3. Let p and q be two arrows in S.

• If (τ(p) < τ(q) < η(p) < η(q)) is a cyclic ordering, we say p and q cross.

• If (τ(p) ≤ τ(q) < η(q) ≤ η(p)) is a cyclic ordering, then p lies to the right of q. We say
that p and q are parallel, with p right-parallel of q. Define left-parallel similarly.

• If (η(p) ≤ τ(q) < η(q) ≤ τ(p)) is a cyclic ordering, then p lies to the right of q. We
say p and q are antiparallel, with p right-antiparallel of q. Define left-antiparallel
similarly.
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Visually, crossing arrows are arrows that intersect on their interiors, like the arrow
from 9 to 4 and the arrow from 7 to 2 in Figure 3. Parallel arrows are, roughly, arrows
that go in the "same direction", like the arrow from 9 to 4 and the arrow from 10 to 1 in
Figure 3, while antiparallel arrows are arrows which neither cross nor are parallel.

Given a realizable boundary chart C = (k, n, S, X), we describe how to recover the
permutation of its associated boundary algebra. We will construct the permutation as a
permutation graph on vertices wi such that wi lies between vertices vi and vi+1. We refer
to the vertices wi as strand vertices. First, we must discuss the ideas of visibility and of
influence in a boundary chart. We do this inductively. We will give an example of these
definitions in Example 3.8. We start with a reformulation of the right and left relation
numbers which will make the following construction easier to state.

Definition 3.4. Let C be a boundary chart with left and right relation numbers X and Y, respec-
tively. For p ∈ S, let L(p) (resp. R(p)) be the set of arrows left-parallel (resp. right-parallel) to
p. Then the adjusted left relation numbers are defined inductively by X′

p = Xp − ∑q∈L(p) X′
q

and the adjusted right relation numbers are defined inductively by Y′
p = Yp − ∑q∈R(p) Y′

q.

Definition 3.5. Let α be an arrow of a realizable boundary chart C = (k, n, S, X). Inductively
define the following:

1. The right-head-visible strand vertices to α are those strand vertices to the right of α

which are not right-head-influenced by a right-parallel arrow of α or left-head-influenced by
a right-antiparallel arrow of α (this condition is vacuous if there are no arrows to the right
of α). The right-head-influenced strand vertices of α are the Y′

α right-head-visible strand
vertices most immediately clockwise of η(α).

2. The left-head-visible strand vertices of α are those strand vertices to the left of α which
are not left-head-influenced by a left-parallel arrow of α or right-head-influenced by a left-
antiparallel arrow of α. The left-head-influenced strand vertices of α are the X′

α left-head-
visible strand vertices most immediately counterclockwise of η(α).

We will use the phrase head-influenced to mean either left- or right-head-influenced. We define
left-tail visible and right-tail-visible strand vertices as above, swapping “head” with “tail,”
“η(α)” with “τ(α),” and “clockwise” with “counter-clockwise.”

Construction 3.6. Let C = (k, n, S, X) be a realizable boundary chart. Let α be an arrow of
C. Let wσ1 , . . . , wσX′(α) be the right-head-influenced strand vertices of α, ordered clockwise so
that wσ1 is most immediately clockwise of η(α). Let wσ′

1
, . . . , wσ′

X′(α)
be the right-tail-influenced

strand vertices of α, ordered clockwise so that wσX′(α) is most immediately counter-clockwise of
τ(α). Then define ϕα(σj) = σ′

j for j ∈ X′(α). Symmetrically define ϕα on the left-head-influenced
vertices of α. We define a function (indeed, we will see, a permutation) π on [n] by

π(j) =

{
ϕα(j) wj is head-influenced by an arrow α ∈ C
j − k otherwise.



Combinatorics of Boundary Algebras 9

3:12:4

1 2
3

4

5
678

9

10 3:1

11
12

3:12:4

1 2
3

4

5
678

9

10

11
12

3:1

12 1
2

3

4

5
67

8

9

10

11

3:12:4

1 2
3

4

5
678

9

10

11
12

3:1

12 1
2

3

4

5
67

8

9

10

11

Figure 3: Application of Construction 3.6 to a boundary chart with 12 vertices and
k = 5. For clarity, we use a red i in place of wi and a black i in place of vi.

It is not immediately obvious that π is well-defined; for example, some strand vertex
wj may be head-influenced by two arrows α and β. In fact, whenever this happens,
ϕα(j) = ϕβ(j).

Theorem 3.7. The map π is a well-defined stable-interval-free permutation, and C is the bound-
ary chart of Bπ.

This process is most easily understood visually, in an example. We denote nonadja-
cent arrows in the boundary algebra from vi to vj by pi→j.

Example 3.8. We look at Figure 3. The first subfigure shows a boundary chart on 12 vertices.
We have Y′

p7→2
= 1, hence the only right-head-influenced strand vertex of p7→2 is w2 and its

only right-tail-influenced strand vertex is w6 and we see that π(2) = 6. Similarly, the right-
influence of p9→4 induces π(4) = 8. We have Y′

p10→1
= Yp10→1 − Yp7→2 − Yp9→4 = 2, so the

right-head-influence of p10→1 is {w1, w3} (skipping over w2, which is right-head-influenced by
the right-parallel arrow p7→2) and the right-tail-influence of p10→1 is {w7, w9} (skipping over
w8, which is right-tail-influenced by p9→4). Then we see π(1) = 7 and π(3) = 9. The middle
of Figure 3 shows in red all strands induced by the influence of an arrow; the right completes the
permutation graph by adding in blue the remaining strands from wj to wj−k.

3.2 Realizable Boundary Charts

We next classify realizable boundary charts.

Theorem 3.9. Let C = (k, n, S, X) be a boundary chart with left and right relation numbers X
and Y, respectively, and with adjusted left and right relation numbers X′ and Y′, respectively. For
p ∈ S, let R∦(p) and L∦(p) denote the sets of arrows right and left-antiparallel to p, respectively.
Then C is realizable if and only if the following hold.

1. For all p ∈ S, Xp + ∑q∈L∦(p) Y′
q < reachp and Yp + ∑q∈R∦(p) X′

q < n − reachp.
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Figure 4: Four nonrealizable boundary charts violating the conditions of Theorem 3.9.
For clarity, we use a red i in place of wi and a black i in place of vi.

2. For all p ∈ S, X′
p ≥ 0 and Y′

p ≥ 0.

(a) If X′
p = 0 (resp. Y′

p = 0), there must be crossing arrows q and r, both left (rep. right)
parallel to p, such that τ(p) = τ(q) and η(p) = η(r).

3. Let p, q ∈ S be crossing such that (vi = η(p) < vj = η(q) < τ(p) < τ(q)) is a cyclic or-
dering. Let Ap denote the set of arrows r right-parallel to p such that η(r) ∈ [η(p), η(q)).
Let Aq denote the set of arrows r left-parallel to q such that η(r) ∈ (η(p), η(q)]. Then
Y′

p + X′
q + ∑r∈Ap Y′

r + ∑r∈Aq X′
r ≤ j − i, where the right side is taken modulo n so that it

lies in [n].

4. If p, q ∈ S form an oriented digon, then Xp + Xq + Yp + Yq < n.

One may attempt to apply Construction 3.6 to general boundary algebras. However,
the conditions of Theorem 3.9 are necessary in order for the result to be a well-defined
stable-interval-free permutation. For example, condition 1 ensures that there are enough
strand vertices to the right of any p ∈ S to count out Y′

p right-influenced strand vertices.
In the first subfigure of Figure 4, there are not enough red vertices for p4→1 to have
three left-supporting strands. The second subfigure in Figure 4 violates condition 2, as
X′(p6→2) = −1. The left-supporting strands of p8→12 also left-support p6→2, so p6→2 has
too many left-supporting strands. Condition 3 ensures that, if p and q are arrows of C
which both influence wj, then ϕp(j) = ϕq(j). See the third subfigure of Figure 4, where
the two crossing arrows are pulling the strand starting at w1 in different directions.
Condition 4 ensures the permutation constructed in Construction 3.6 is stable-interval-
free; see the fourth subfigure of Figure 4, where the permutation fixes [1, 3].

The sufficiency of these conditions is more surprising. We prove sufficiency by show-
ing that Construction 3.6 and the map of Theorem 2.10 compose to the identity on the
boundary charts satisfying the conditions of Theorem 3.9. Hence, we may view the com-
binatorial conditions of Theorem 3.9 as a new cryptomorphism for connected positroids.
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3.3 Minimal relations

Recall the presentation of the boundary algebra Bπ
∼= CQ◦

π/I◦π given in Theorem 2.12,
which has the drawback of the ideal I◦π being defined using a cancellative closure. In
this section, we give a description of the minimal relations of the ideal I◦π using the
information of the permutation π and the boundary chart C = (k, n, S, X).

Definition 3.10. Given an arrow p ∈ S of C, let Rp (respectively Tp) be the vertex wi of the
permutation graph most immediately clockwise of η(p) (resp. τ(p)) which is the start (resp. end)
of a strand which crosses p (i.e., which starts to the right of p and ends to the left, or vice versa).

• Two (necessarily parallel) arrows p and q are stitch-equivalent if Rp = Rq and Tp = Tq.

• A strand is relation-defining if it does not travel from Rp to Tp for any arrow p.

Example 3.11. In Figure 3, the arrows p10→1 and p9→4 are stitch-equivalent to each other with
T10→1 = T9→4 = 12 and R10→1 = R9→4 = 5, but not to the arrow from 7 to 2, with T7→2 = 8
and R7→2 = 3. Every strand is relation-defining with the exception of the strand from 5 to 12.

Definition 3.12. For va and vb boundary vertices of Bπ, define the aggressive clockwise path
ACL(va, vb) from va to vb by starting at va and repeatedly taking the non-yj arrow which ends
most immediately counter-clockwise of vb. Similarly define the aggressive counter-clockwise
path ACC(va, vb). When these paths are equivalent, we say that the aggressive relation from
va to vb is [ACL(va, vb)]− [ACC(va, vb)].

Theorem 3.13. The following relations of CQ◦
π, along with the relation xiyi = yi−1xi−1 for each

i ∈ [n], form a minimal generating set for I◦π:

1. For every relation-defining strand from wa to wb, take the aggressive relation from vb to va.

2. Let {p1, . . . , pm} be a stitch-equivalence class, ordered left to right, with Tpi = T and
Rpi = R for all i ∈ [m]. Define vam+1 := T, vb0 := R, and vai := τ(pi), vbi := η(pi) for
i ∈ [m]. Then, take the aggressive relation from vai to vbi−1

for each i ∈ [m + 1].

Example 3.14. Consider the boundary chart of Figure 3. The strand from w1 to w7 is relation-
defining and yields the relation p7→2y1 = x7x8x9p10→1. All of the strands wj 7→ wj−k, drawn
in blue, give relations composed only of x’s and y’s. For example, the strand from w5 to w12
gives x12x1 · · · x4 = y11y10 · · · y5. There are two stitch-equivalence classes {p10→1, p9→4} and
{p7→2}. The former gives {y11y10p10→1 = x12, p10→1x1x2x3 = y9p9→4, p9→4x4 = y8y7y6}
and the latter gives {p7→2x2 = y6y5y4y3, x8x9p10→1x1 = y7p7→2}. These five relations and
those given by relation-defining strands make up all minimal relations of I◦π.

Note that Theorem 3.13 uses both the boundary chart and the permutation obtained
from it by Construction 3.6. It would be hard to rephrase the theorem in terms of one or
the other. This indicates that boundary charts and stabilized-interval-free permutations,
while both cryptomorphisms of connected positroids, highlight different information.
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