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Wilting Theory of Flow Polytopes
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Abstract. Many important polytopes and their canonical triangulations appear as
DKK triangulations of a framed directed acyclic graph (DAG) Γ. These triangulations
are combinatorially modelled by cliques of routes on the framed DAG. When Γ is
amply framed, the dual graph of its DKK triangulation, or DKK graph, has a lattice
structure called the DKK lattice. We study the clique complex of routes which avoid
an arbitrary set of “wilted” edges. This leads to various decompositions of the DKK
lattice into intervals, generalizing decompositions of the Tamari lattice into ν-Tamari
intervals. We further classify the framed DAGs whose DKK graphs may be understood
as an interval in the DKK lattice of an amply framed DAG. We realize ν-Tamari lattices
and the s-weak order as DKK lattices of such “rooted” DAGs and we extend results
about shellability and h∗-polynomials from the amply framed case to the rooted case.
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1 Introduction

Flow polytopes, which model the space of unit flows on a directed acyclic graph (DAG),
are a fundamental object of combinatorial optimization and have relations to many
fields such as representation theory and algebraic geometry. Danilov, Karzanov, and
Koshevoy [5] introduced framed DAGs and defined a notion of pairwise compatibility
on routes. The complex of cliques, or sets of pairwise compatible routes, of a framed
DAG Γ serves as a combinatorial model for a (regular unimodular) DKK triangulation
of the associated flow polytope. Many important classes of polytopes and their canon-
ical triangulations appear in this way, such as associahedra, generalized permutahedra,
s-permutahedra, and many order polytopes. We refer to the dual graph of the DKK
triangulation as the DKK Graph GΓ. An exceptional route is one which is in every maximal
clique, and Γ is amply framed if every edge is in an exceptional route. It was shown in [1]
that the clique complex of an amply framed DAG Γ agrees with the support τ-tilting
complex of a gentle algebra as described in [3, 7]; in particular, its dual graph has a
lattice stucture which we call the DKK Lattice LΓ.

In this abstract, we mark a set W of edges of a framed DAG as wilted and we study
the lush subgraph G(Γ,W) of GΓ of maximal cliques whose nonexceptional routes avoid
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all edges of W. We show that when Γ is amply framed, this gives an interval of the
DKK lattice LΓ which we call the lush interval L(Γ,W). We call the wilted framed DAG
(Γ, W), or the set W, viable if the lush subgraph is nonempty. Our first result provides
a complete characterization of the viable edge sets W of a framed DAG G. By choosing
a set S of exceptional routes and varying W across all ways to wilt exactly one edge
from each route of S, we obtain the wilted decomposition of GΓ by S into lush subgraphs.
When Γ is amply framed, this is a decomposition of the DKK lattice into lush intervals.
Polyhedrally, we are individually restricting the DKK triangulation of the flow polytope
to all codimension-|S| facets which avoid all vertices of exceptional routes in S; taking
the cone of these triangulations with these exceptional vertices recovers the original DKK
triangulation. As an application, we realize various decompositions of the Tamari lattice,
which arises as the DKK lattice of a framed DAG car(1n) [9, 2], into ν-Tamari intervals
as wilted decompositions.

Next, we use wilting theory to define a new class of framed DAGs which we call
rooted. Given a rooted DAG Γ, we construct an ample envelope (Γ′, W ′) of Γ such that
L(Γ′,W ′)

∼= GΓ. We thus prove that rooted DAGs are precisely the framed DAGs whose
DKK graphs may be understood as intervals in the DKK lattice of an amply framed
DAG. As a consequence, we induce a well-defined lattice structure on DKK graphs of
rooted DAGs, we prove that clique complexes of rooted DAGs are shellable, and we get
a formula for the h∗-vectors of rooted flow polytopes. Rooted DAGs thus inherit many
nice properties of amply framed DAGs.

In recent years, the Hasse diagrams of many prominent lattices and their general-
izations have been realized as DKK graphs of framed DAGs. In particular, the Hasse
diagrams of the ν-Tamari lattice and the s-weak order have been realized as the DKK
graphs of car(ν) and oru(s) DAGs. In fact, these framed DAGs are rooted, and our
lattice structure realizes their DKK lattices as the ν-Tamari lattice and s-weak order.

We remark that many of our results are phrased more generally for gentle algebras,
though for brevity we do not treat this generality in this extended abstract.

2 Background on DAGs and Ample Framings

We start by recalling some background on flow polytopes and amply framed DAGs. Let
G = (V, E) be a finite directed acyclic graph (DAG) with vertex set V and edge set E.
For each v ∈ V, let in(v) and out(v) denote the set incoming and outgoing edges of v,
respectively. A vertex v is called a source if in(v) = ∅, a sink if out(v) = ∅, and internal
otherwise. An edge α ∈ E is directed from its tail t(α) to its head h(α). The edge α is
internal if it is between two internal vertices, and otherwise it is a source edge and/or a
sink edge. A route of G is a maximal (directed) path in G.

Definition 2.1. A flow f on a DAG G is a function f : E → R which preserves flow at
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each internal vertex, i.e., for every internal vertex v we have ∑e∈in(v) f (e) = ∑e∈out(v) f (e).
The flow polytope F1(G) is the space of unit flows on G; i.e., flows satisfying xe ≥ 0 for all
edges e ∈ E and ∑v is a source

e∈out(v)
f (e) = 1.

The dimension of F1(G) is dim(F1) = |E| − #{v ∈ V : v is an inner vertex} − 1.
The vertices of F1(G) are precisely the indicator vectors of routes of G.

Definition 2.2. Let G = (V, E) be a DAG. For each internal vertex v of G, assign a
linear order to the edges in in(v) and assign a linear order to the edges in out(v). This
assignment is called a framing of G, which we denote by F. We use the symbol Γ to refer
to a framed DAG (G, F). If e is less than f in the linear order for F on in(v), we write
e <F,in(v) f (and similarly for out(v)). We may drop one or both subscripts when clear.

In the following, assume Γ = (G, F) is a framed DAG. To denote a framing, we often
label the half-edges or edges of a DAG with integers. See Figure 1 and Figure 2 for
examples. An edge of a framed DAG Γ is tail-highest (respectively tail-lowest) if α is the
greatest (respectively least) element in the partial order on out(t(α)). An edge which is
neither tail-highest nor tail-lowest is tail-middle. Similarly, an edge may be head-highest,
head-lowest, or head-middle. An edge which is both tail-highest and head-highest is called
highest. We similarly may call edges middle or lowest. An edge is steep if it is head-highest
and tail-lowest, or head-lowest and tail-highest.

Definition 2.3. A path p of Γ is up-incompatible to a path q if p contains α1Rα2 and q
contains β1Rβ2, for some path R and some edges αi, βi with α1 >in(v) β1 and α2 <out(w)

β2. Two paths are incompatible if one is up-incompatible to the other. Otherwise, they
are compatible. If a route p in Γ is compatible with every other route in Γ, we say that p
is exceptional. A clique is a set of pairwise-compatible routes in Γ.

For example, in Figure 1, the route 121 and the route 211 are incompatible, as they
share the first internal vertex but 121 enters this vertex with a higher edge and leaves
with a lower edge compared to 211.

It follows that a route p of a framed DAG Γ is exceptional if and only if either
every edge is highest, every edge is lowest, or p consists of a single edge. Note that an
exceptional route is a route which is in every maximal clique. The clique complex KΓ of Γ
is the simplicial complex of cliques of Γ.

An edge α of Γ is an idle edge if in(h(α)) = 1 and h(α) is internal, or out(t(α)) = 1
and t(α) is internal. Idle edges may be contracted to obtain a new framed DAG whose
clique complex and DKK graph agree with the original. Hence, we may safely assume
that our DAGs have no idle edges. Γ is amply framed if every edge is contained in some
exceptional route. In [1], it was shown that a framed DAG Γ with no idle edges is
amply framed if and only if (1) Γ is full (i.e., for any internal vertex v of Γ, we have
|in(v)| = 2 = |out(v)|), and (2) there is a map ϕF : E → {1, 2} realizing the framing F
(i.e., there are no steep edges in F).
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2.1 Flow Polytopes and DKK Triangulations

Recall that vertices of the flow polytope F1(Γ) are indicator vectors of routes of Γ.
Through this correspondence, we may view maximal cliques of Γ as collections of ver-
tices of F1(G) which form a simplex of a regular unimodular triangulation:

Theorem 2.4 ([5]). Let Γ be a framed DAG. The set of maximal cliques of Γ forms a regular
unimodular triangulation of the flow polytope F1(G).

See Figure 1, where the top clique corresponds to the simplex whose vertices are
given by (the indicator vectors of) the routes {111, 211, 221, 222} appearing in the clique
(the exceptional routes 111 and 222 are not drawn for readability). The triangulation
from Theorem 2.4 is called the DKK triangulation of Γ. We will be particularly interested
in the dual graph of a DKK triangulation (equivalently, the dual graph of the clique
complex), which we refer to as the DKK graph GΓ.

When Γ is amply framed, GΓ may be interpreted as the Hasse diagram of a lattice
(whose lattice structure is inherited from the τ-tilting theory of an associated gentle
algebra [1]), which we call the DKK lattice LΓ. This lattice structure may be described as
follows using directional compatibility (see Figure 1 and Figure 5 for examples).

Definition 2.5 ([1, Definition 6.1]). Let M1 = M ∪ {p} and M2 = M ∪ {q} be adjacent
maximal cliques in GΓ for Γ amply framed. Then, without loss of generality, p is up-
incompatible to q and q is not up-incompatible to p. In this case, M1 > M2 in LΓ.

3 Wilted Framed DAGs

We now wilt a set W of edges of a framed DAG and consider the maximal cliques whose
nonexceptional routes avoid the wilted edges. In the amply framed case, these cliques
form a lush interval in the DKK lattice LΓ. We characterize the sets of wilted edges giving
nonempty lush intervals and we give a recipe to obtain canonical decompositions of LΓ
into lush intervals.

Definition 3.1. A wilted framed DAG (Γ, W) is a framed DAG Γ = (G, F) along with a set
W of edges of G considered as wilted. We say that a route of Γ is wilted if it contains an
edge of W. Otherwise, it is lush. A clique is wilted if it contains a wilted nonexceptional
route, and is otherwise lush. Let S be the set of exceptional routes containing an edge
of W; then the lush clique complex K(Γ,W) is the pure simplicial complex whose maximal
simplices are of the form M\S, for any lush maximal clique M. The lush subgraph G(Γ,W)

is the dual graph of K(Γ,W). We say that (Γ, W) is viable if G(Γ,W) is nonempty.
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Remark 3.2. Let (Γ, W) be a viable wilted framed DAG. Let del(Γ, W) be the framed
DAG obtained by deleting all edges of W from Γ. There is a natural bijection be-
tween lush routes of (Γ, W) and routes of del(Γ, W) which induces a bijection K(Γ,W)

∼=
Kdel(Γ,W). Hence, the lush subgraph G(Γ,W) is isomorphic to the DKK graph Gdel(Γ,W).

The following result is proven representation-theoretically by considering the τ-tilting
lattice of the associated gentle algebra of an amply framed DAG.

Proposition 3.3. Let (Γ, W) be a wilted amply framed DAG. The lush subgraph G(Γ,W) forms
an interval in L(Γ,W). We call this the lush interval L(Γ,W).

We now characterize the sets of edges which produce viable wilted framed DAGs.

Theorem 3.4. Let (Γ, W) be a wilted framed DAG. Then (Γ, W) is viable if and only if

1. each edge of W is contained in an exceptional route, no exceptional route contains more
than one edge of W, and

2. every internal vertex has an incoming and outgoing lush edge.

3.1 Wilted Decompositions of Framed DAGs and Flow Polytopes

We define the wilted decomposition of a framed DAG with respect to a set of exceptional
routes and provide an interpretation in terms of flow polytopes.

Definition 3.5. Let S be a subset of the set of exceptional routes of Γ. Define

WS := {W ⊆ E | W consists of exactly one edge from each route of S} .

For each element W of WS, we obtain a wilted framed DAG (Γ, W) and a (possibly
empty) lush subgraph G(Γ,W). Each maximal clique M of Γ is contained in exactly one
such lush subgraph G(Γ,WM). Hence, the set S gives a wilted decomposition of GΓ into lush
subgraphs. Conversely, given a viable wilted framed DAG (Γ, W), we may let SW be
the set of exceptional routes containing an edge of W; then G(Γ,W) appears in the wilted
decomposition of Γ by SW .

When Γ is amply framed, GΓ has a lattice structure LΛ and Proposition 3.3 shows that
each lush subgraph G(Λ,W) is actually an interval L(Λ,W) ⊆ LΛ. In the future, we will see
that this situation holds more generally for rooted DAGs. See Figure 1 or Figure 5 for an
example of a decomposition of LΛ into intervals for an amply framed DAG Γ.

Proposition 3.6. Let Γ be a framed DAG and let S be a set of exceptional routes of Γ. The
nonzero flow polytopes {F1(del(Γ, W)) : W ∈ WS} are precisely the codimension-|S| faces of
F1(Γ) containing none of the vertices given by exceptional routes in S.
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Figure 1: Shown is an amply framed DAG, the wilted decomposition of its DKK
lattice by the route 222 (with no exceptional routes drawn for readability), and its flow
polytope.

If S is a set of exceptional routes of Γ, then for any W ∈ WS, Proposition 3.6
shows that the lush subgraph G(Γ,W) ⊆ GΓ is the dual graph the DKK triangulation
of the codimension-|S| face F1(del(Γ, W)) of F1(Γ). By taking the DKK triangulations
F1(del(Γ, W)) for all W ∈ WS and adding the vertices corresponding to exceptional
routes of S to all simplices, we recover the original DKK triangulation of F1(Γ).

Example 3.7. Shown in Figure 1 is an amply framed DAG Γ and its flow polytope F1(Γ),
which is a cube. The vertex labelled 121, for example, corresponds to the route which
first takes a 1-edge, then a 2-edge, then a 1-edge. Let S = {222} consist only of the
2-route of Γ. The wilted decomposition of Γ by S separates LΓ into three intervals, high-
lighted in different colors in the middle of Figure 1, based on which 2-edge is avoided
by the nonexceptional routes. By Proposition 3.6, deleting any 2-edge of Γ restricts the
triangulation to one of the three facets of F1(Γ) not incident to the vertex corresponding
to 222, which are highlighted in Figure 1. For example, wilting the sink 2-edge yields the
lush interval highlighted in blue and deleting it yields the back face of the cube with ver-
tices {111, 121, 211, 221}, highlighted in blue, with the dotted DKK triangulation. Taking
the cone of these three separate DKK triangulations with the vertex corresponding to
222 gives the DKK triangulation of Γ.

4 Rooted Framed DAGs

In this section, we define a new class of framed DAGs which we call rooted. Given a
rooted DAG, we obtain a wilted amply framed DAG (Γ′, W ′) whose lush clique complex
K(Γ′,W ′) is isomorphic to KΓ. As a consequence, we give a lattice structure to GΓ and
extend results about shellability and h∗-polynomials from the amply framed case.

Definition 4.1. An exceptional segment of a framed DAG Γ (with no idle edges) is a
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Figure 2: A framed DAG and its exceptional segments (exceptional routes in purple).

maximal path p of Γ which is compatible with every other path. An exceptional segment
is rooted if it starts at a source vertex or ends at a sink vertex (or both). A framed DAG Γ
is rooted if every exceptional segment of Γ is rooted.

An exceptional route is an exceptional segment which starts at a source vertex and
ends at a sink vertex. Any middle edge makes up its own exceptional segment. When Γ
has no idle edges, any steep edge is a part of exactly two exceptional segments, and any
non-steep edge is a part of exactly one exceptional segment. See Figure 2.

Lemma 4.2. Given a viable wilted amply framed DAG (Γ, W), the framed DAG del(Γ, W)
obtained by deleting all edges of W from Γ is rooted.

Proof. Exceptional segments of del(Γ, W) correspond to maximal lush segments of ex-
ceptional routes of (Γ, W). Theorem 3.4 shows that any exceptional route of Γ contains
at most one edge of W, ensuring that each exceptional segment of del(Γ, W) either starts
at a source or ends at a sink.

We now focus on showing the converse of Lemma 4.2. More concretely, given a
rooted framed DAG Γ, we wish to obtain an amply framed DAG (Γ′, W ′) such that
KΓ

∼= K(Γ′,W ′). If a framed DAG Γ is not amply framed, then either Γ is not full (i.e.,
there is an internal vertex of Γ with in-degree or out-degree greater than 2), or Γ has a
steep edge. We will define operations which fix these issues while preserving the lush
DKK graph. We first define an operation which pulls a framed DAG closer to being full.

Definition 4.3. Let α be a tail-middle edge of a viable wilted framed DAG (Γ, W). In
particular, it is necessary that h(α) has an in-degree greater than 2. By Theorem 3.4, α

is lush. The wilted 2-decontraction of (Γ, W) with respect to α is the wilted framed DAG
(Γ′, W ′) whose vertex set is given by V′ := {v′ : v ∈ V} ∪ {vα} and whose edges are
described as follows. For any edge β : i → j of Γ, there is an edge β′ : i′ → j′ (if i ̸= t(α)
or if i = t(α) and β <out(t(α)) α) or β′ : vα → j′ (else). There is an additional connecting
edge δ : v′ → vα and there is a wilted dummy edge ϵ : vsource → vα. The framing of Γ′

is inherited from the framing on Γ, with the stipulation that the connecting edge δ is
highest and the dummy edge ϵ is lowest. Performing a wilted 2-decontraction to the left
DAG of Figure 3 at its unique tail-middle edge results in the middle DAG of Figure 3.
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Note that α′ is tail-lowest in Γ′ and that deleting the dummy edge ϵ and contracting
Γ′ along the connecting edge δ recovers (Γ, W). A wilted 1-decontraction with respect to
an edge α which is tail-middle is obtained by reversing all partial orders of the framing
F, performing a wilted 2-decontraction, and reversing the partial orders again. Dually,
we may define wilted 1-decontractions and wilted 2-decontractions with respect to an edge
which is head-middle. Given an edge α of (Γ, W) which is head-middle or tail-middle,
any wilted decontraction of α which does not create a steep edge preserves the lush
clique complex. This gives us the following lemma.

Lemma 4.4. Let α be a head-middle or tail-middle edge of a viable wilted framed DAG (Γ, W).
There exists a wilted decontraction (Γ′, W ′) of (Γ, W) with respect to α such that (Γ′, W ′) is
viable and K(Γ′,W ′)

∼= K(Γ,W).

If Γ is a rooted framed DAG with no idle edges which is not full, then it must have
an edge which is head-middle or tail-middle. Then we may repeatedly apply Lemma 4.4
to obtain a full wilted DAG (Γ′, W ′) whose lush clique complex agrees with that of Γ.
The framed DAG Γ′ may not be amply framed, since it may have steep edges. We now
define an operation to fix this.

Definition 4.5. Let (Γ, W) be a wilted framed full DAG. Let α be an edge of Γ which is
steep. Without loss of generality, suppose α is tail-highest and head-lowest; the other
case is similar. We define the amplification of (Γ, W) with respect to α as the wilted framed
DAG (Γ′, W ′) as follows. See the middle and right of Figure 3 for an example. The vertex
set of Γ′ consists of the vertices of Γ as well as an additional vertex vα. For any edge β

of Γ other than α, there is a corresponding edge β′ of Γ′. Replacing α in Γ′ is an edge α′1
from t(α) to vα which is highest in F, and an edge α′2 from vα to h(α) which is lowest in
F. Additionally, there is a highest wilted edge γ from a source to vα and a lowest wilted
edge β from vα to a sink.

Lemma 4.6. If α is a steep edge of a full viable wilted framed DAG (Γ, W), then the amplification
(Γ′, W ′) of (Γ, W) with respect to α is viable and K(Γ′,W ′)

∼= K(Γ,W).

Theorem 4.7. If Γ is a rooted framed DAG, then there is a wilted amply framed DAG (Γ′, W ′)
such that KΓ

∼= K(Γ′,W ′).

Proof. We may suppose that Γ is rooted and has no idle edges. First, we repeatedly apply
Lemma 4.4 until we have reached (Γ′′, W ′′), where Γ′′ is full, and then we repeatedly
apply Lemma 4.6 to fix the steep edges, resulting in an amply framed (Γ′, W ′) with
KΓ

∼= K(Γ′,W ′). For any exceptional segment p of Λ, there is an exceptional route p′ of Λ′

that begins with a wilted edge if and only if p begins with an internal vertex and ends
with a wilted edge if and only if p ends with an internal vertex. Hence, the condition
that Γ is rooted corresponds to the condition that (Γ′, W ′) is viable by Theorem 3.4. See
Figure 3 for an example of this process.
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Figure 3: A framed DAG (left), a wilted 2-decontraction with respect to a its tail-
middle edge (middle), and an amplification of the resulting DAG at its steep edge
(right). Wilted edges are red and the connecting edge is blue.

We call (Γ′, W ′) as in the statement of Theorem 4.7 an ample envelope of Γ. A conse-
quence of the existence of ample envelopes is that the DKK graph of a rooted framed
DAG has a lattice structure generalizing the amply framed case [1].

Definition 4.8. Let Γ be a rooted framed DAG. Let M1 = M ∪ {p} and M2 = M ∪ {q} be
adjacent maximal cliques in GΓ. Then, without loss of generality, p is up-incompatible to
q and q is not up-incompatible to p. In this case, we say that M1 > M2.

Corollary 4.9. The transitive closure of the relations of Definition 4.8 gives GΓ the structure of
the Hasse diagram of a lattice, which we refer to as the DKK lattice LΓ.

Corollary 4.9 is proven by inheriting the lattice structure of an ample envelope. More-
over, any lush subgraph of a rooted DAG may be considered as an interval in LΓ. Hence,
the wilted decomposition of a rooted DAG by a set of exceptional routes (Definition 3.5)
is a decomposition of LΓ into lush intervals. The next corollary, which follows from
Theorem 4.7 and Lemma 4.2, characterizes rooted DAGs as those whose DKK graphs
may be understood as lush intervals of amply framed DAGs .

Corollary 4.10. A nonempty lattice is of the form L(Γ,W), where (Γ, W) is a wilted amply framed
DAG, if and only if it is of the form LΓ′ , where Γ′ is a rooted framed DAG.

It was shown in [1] that if Γ is amply framed then any linear extension of LΓ is a
shelling order for KΓ. By realizing the DKK graph of a rooted DAG as an interval in the
DKK lattice of an ample envelope, we prove the following.

Theorem 4.11. Let Γ be a rooted framed DAG. Then any linear extension of LΓ gives a shelling
order of the lush clique complex KΓ.

Following [1, §6], we get a formula for the h∗-polynomials of flow polytopes arising
from rooted framed DAGs.

Proposition 4.12. Let Γ be a rooted DAG. The ith coefficient of the h∗-vector of F1(Γ) is given
by the number of elements in LΓ covering exactly i elements.
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5 Motivating Example: The (ν-)Tamari Lattice

The Tamari lattice is a mathematical structure that captures the partial order of binary
trees under a rotation operation. Préville-Ratelle and Viennot [8] introduced ν-Tamari
lattices as a generalization of Tamari lattices and showed that the Tamari lattice has a
decomposition into ν-Tamari intervals. In [4] the ν-Tamari lattice was realized as the
one-skeleton of the polyhedral complex known as the ν-associahedron, and in [2] it was
shown that ν-Tamari lattices arise as DKK graphs of a class of DAGs known as ν-caracol
graphs. In this section, we interpret certain wilted decompositions on caracol graphs as
decompositions of Tamari lattices into ν-Tamari intervals. Moreover, given a ν-Tamari
lattice Lcar(ν), we obtain a canonical Tamari lattice Lcar(1n), which is the DKK lattice of
a framed DAG car(1n), and a set S of exceptional routes of car(1n) such that the lattice
Lcar(ν) appears in the wilted decomposition of Lcar(1n) by S.

Definition 5.1. Let a, b be nonnegative integers, and let ν := NEν1 NEν2 . . . NEνa be a
lattice path from (0, 0) to (b, a) (with νi ≥ 0). The ν-caracol graph car(ν) is the graph on
the vertex set {0, 1, . . . , a}, together with νi copies of the edge (0, i) for i = 1, . . . , a − 1,
one copy of the edge (i, a) for i = 1, . . . , a − 1, and the edges (i, i + 1) for i = 0, . . . , a − 1.
Give car(ν) the framing such that the horizontal edges from i to i + 1 are given the
highest element in the vertex order on either side. See Figure 4 for an example. In the
classical case, ν = 1n = (1, . . . , 1) for some n and the DKK lattice Lcar(1n) is Tamari.

It was shown in [2, Theorem 1.2] that Gcar(ν) is the Hasse diagram of the ν-Tamari
lattice. In fact, the framed DAGs Gcar(ν) are rooted, and our lattice structure realizes
Lcar(ν) as the ν-Tamari lattice. See Figure 5.

Theorem 5.2. Let V ⊆ [n]. Then the wilted decomposition of car(1n) by the set of 1-labelled
routes whose internal vertices are in V is a decomposition of the Tamari lattice into ν-Tamari
intervals. Any ν-Tamari lattice appears in such a decomposition, for some n and V.

Proof. If W is a viable set of 1-edges of car(1n), then deleting them and contracting yields
some car(ν). Conversely, it may be seen that any DAG car(ν) has an ample envelope
(car(1n), W) where W consists of 1-edges. See the left and middle of Figure 5.

Example 5.3. The left of Figure 5 shows the decomposition of the Tamari lattice car(T3)
into ν-Tamari intervals given by the first and last 1-labelled routes. The lush interval
in red is the lush interval of the wilted framed DAG car(T3) in the middle of Figure 4,
which is the DKK graph of the car(ν) DAG on the left of Figure 4 by Proposition 3.6.

The right of Figure 5 shows the wilted decomposition by the set of all 1-labelled
routes, which recovers the partition introduced in [8]. This induces a wilted decomposi-
tion of Lcar(ν) into two chains.

We end the extended abstract with some open questions:
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Figure 4: A ν-Caracol graph where ν = (0, 2, 0, 1), its realization as a wilted car(T3)

graph, and the corresponding lattice path.

Figure 5: Shown is the wilted decomposition of the (Tamari) lattice Lcar(1n), shown in
the middle of Figure 4, induced by the first and third 1-routes (left) and by the set of
all 1-routes (right). For readability, exceptional routes are not drawn.
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1. Rooted framed DAGs inherit nice properties from amply framed DAGs. Examples
of rooted framed DAGs include ν-caracol and s-oruga [6] graphs, whose DKK
lattices are the ν-Tamari lattices and the s-weak order. What other lattices may be
realized as DKK lattices of rooted framed DAGs?

2. The notable class of ν-Tamari lattices may be defined as the lush intervals of car(1n)
in its decomposition by some set of 1-routes. Can we realize other interesting lattice
decompositions using wilting theory?

3. The DKK theory of rooted framed DAGs is in some sense equivalent to the wilting
theory of viable wilted amply framed DAGs. What can be gained from studying
amply framed DAGs with sets of wilted edges which are not viable? In particular,
can we realize the DKK graph of an arbitrary framed DAG as an interval in the
DKK lattice of an amply framed DAG?
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