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Shards for the affine symmetric group
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Abstract. The poset of “biclosed sets” in a root system has received attention as a nat-
ural extension of the weak Bruhat order on the associated Coxeter group. We will dis-
cuss these ideas in the context of the simplest infinite Coxeter groups, the affine sym-
metric groups. Using the combinatorial model introduced in (Barkley–Speyer 2022),
we show that many constructions for the weak order on the symmetric group have
analogs for the extended weak order on the affine symmetric group. In particular,
shards in the affine braid arrangement biject with completely join-irreducible elements
of the extended weak order, and there is a parametrization of both objects by “type-Ã
arc diagrams”.
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1 Introduction

The weak Bruhat order is a partial order on a Coxeter group which is studied for its con-
nections to generalized permutahedra [6], Coxeter arrangements [4], pattern avoidance
[3], preprojective algebras [5], and Catalan combinatorics [10]. Some of these connec-
tions fail to be complete or do not make sense when applied to infinite Coxeter groups.
Motivated by this failure in the context of Hecke algebras [8], Matthew Dyer introduced
a different but related poset associated to each Coxeter group, which is now called the
extended weak order. In general the extended weak order strictly contains the weak
Bruhat order as an order ideal, but for finite Coxeter groups the two posets coincide.
There are many fascinating conjectures [7] suggesting that, often, the extended weak
order is a more natural object than the usual weak Bruhat order. For example, weak
Bruhat order is a lattice for any finite Coxeter group, but is never a lattice for an infinite
Coxeter group (of finite rank). In contrast, the extended weak order is conjectured to
always be a complete lattice. This conjecture has recently been proven for affine Coxeter
groups in [2].

In this extended abstract, we will focus on the combinatorics and geometry of ex-
tended weak order in type Ã, using combinatorial models introduced in [1]. Our focus
will be on shards, certain cones in a Coxeter arrangement which, for finite Coxeter
groups, govern the combinatorics of lattice quotients of the weak order. Our main theo-
rem is the following.

*gbarkley@math.harvard.edu. Grant Barkley was supported by NSF grant DMS-1854512.

mailto:gbarkley@math.harvard.edu


2 Grant T. Barkley

Theorem 1. There is a canonical bijection between shards in the Coxeter arrangement of type
Ãn and completely join-irreducible elements in the extended weak order of type Ãn.

The analogous result is known to be true for all finite Coxeter groups [9]. Importantly,
the result is false for the weak Bruhat order of type Ãn: there is an injection from
completely join-irreducible elements of weak Bruhat order to the set of shards, but it
is not a bijection. The weak Bruhat order is “missing” some join-irreducibles, and the
extended weak order provides them.

We prove this theorem by parametrizing both shards and complete join-irreducibles
by cyclic arc diagrams. Arc diagrams were introduced by Nathan Reading [11] as a
way of encoding the combinatorics of shards in type A. Our results can be viewed as a
type-Ã analog of his. Analogs in type B and type D have also been recently introduced
by Ashley Tharp in her thesis [12].

The Coxeter group of type An is the symmetric group Sn+1, and the Coxeter group of
type Ãn is the affine symmetric group S̃n+1. The corresponding Coxeter arrangements
are the braid and affine braid arrangements, respectively. Because we are working in
a context where we have explicit combinatorial models, we have attempted to avoid
Coxeter-theoretic language in the body of the paper, and have included an introduc-
tion to the relationship between arc diagrams, weak order, and the geometry of these
arrangements for the unfamiliar reader.

2 Weak order and the symmetric group

We begin by recalling the combinatorics of the weak Bruhat order on the symmetric
group. Let Sn denote the group of permutations of the set {1, . . . , n}. We say that the
pair (a, b) is an inversion of π if a < b and π−1(a) > π−1(b). If we write a permutation
in one-line notation, then the inversions are the pairs which are out of order. For instance,
the inversions of the permutation 51423 are (1, 5), (4, 5), (2, 5), (3, 5), (2, 4), (3, 4). Write
N(π) for the set of inversions of π. This set determines π uniquely. The weak order on
Sn is the partial ordering such that u ≤ v if and only if N(u) ⊆ N(v). Figure 1 depicts
the weak order on S3.

2.1 The poset of regions

In this section, we will consider the relationship between the weak order and convex
geometry. To see this, consider the braid arrangement Bn. The braid arrangement
consists of hyperplanes Hab in Rn, for 1 ≤ a < b ≤ n, where Hab := {(x1, . . . , xn) ∈ Rn |
xa = xb}. In Figure 2, we’ve depicted (a slice through) B3. As illustrated in the figure,
two points are in the same region (connected component of Rn \⋃

a<b Hab) if and only if
their coordinates are in the same order. Hence regions correspond to total orderings of
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Figure 1: The Hasse diagram of weak
order on S3.

Figure 2: The intersection of B3 with
a two-dimensional subspace of R3.

the coordinates x1, . . . , xn. We can think of these total orderings as the one-line notation
of a permutation, so that for instance the permutation 231 corresponds to the region
whose points have coordinates satisfying x2 < x3 < x1. This gives a bijection between
elements of Sn and regions of Bn.

There’s another perspective on where this bijection comes from: there is a group
action of Sn on Rn, where π acts via (x1, . . . , xn) 7→ (xπ−1(1), . . . , xπ−1(n)). This induces
an action on the regions of Bn, and this action is simply transitive. So if we fix a “base
region”, then the group action induces a bijection between regions and elements of Sn.
If we use as a base region the region of points such that x1 < · · · < xn, then we get the
bijection outlined above.

For our purposes, the weak order is more naturally viewed as a partial order on
regions of the braid arrangement than it is as a partial order on Sn. Given regions R1
and R2, their separating set is

S(R1, R2) := {Hab | R1 and R2 are in different components of Rn \ Hab}.

Now if B denotes the region with x1 < · · · < xn, then πB is the region associated to
π via the bijection above. In this case, S(B, πB) = {Hab | (a, b) is an inversion of π}.
Hence weak order can be identified with the order on regions of the braid arrangement
so that R1 ≤ R2 if S(B, R1) ⊆ S(B, R2). This is called the poset of regions of Bn.

2.2 Lattice structure

The weak order on Sn is a complete lattice, meaning that it admits meets (greatest lower
bounds) and joins (least upper bounds) for any collection of elements. To compute the
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join of a list of permutations, we introduce a closure operator on sets of inversions. Write
T := {(a, b) | 1 ≤ a < b ≤ n}. If N ⊆ T, then we define the closure of N to be the minimal
set N ⊇ N such that if a < b < c and (a, b), (b, c) are both in N, then (a, c) is in N. The
join of two permutations π1 and π2, denoted π1 ∨ π2, is the unique permutation with
inversion set N(π1) ∪ N(π2). More generally, the join of a family {πi}i∈I has inversion
set

⋃
i∈I N(πi). One can compute the meet of a family {πi}i∈I dually: it has inversion

set (
⋂

i∈I N(πi))
◦, where N◦ := T \ T \ N is the interior of N.

For an example, let’s compute the join of 213 and 132. Then N(213) = {(1, 2)} and
N(132) = {(2, 3)}. We need to compute the closure of N(213)∪ N(132) = {(1, 2), (2, 3)}.
The closure is forced to contain (1, 3), since (1, 2) and (2, 3) are both elements. Hence
N(213) ∪ N(132) = {(1, 2), (2, 3), (1, 3)}. The join 213∨ 132 should be the unique permu-
tation with this inversion set, which is the permutation 321. As can be seen in Figure 1,
we indeed have 213 ∨ 132 = 321.

2.3 Shards and arc diagrams

A permutation π is join-irreducible if it cannot be written as a join of elements strictly
below π. Equivalently, π covers a unique element π∗ in the weak order. The join-
irreducible elements (JIs) in S3 are 213, 132, 231, and 312. Each JI has a unique lower
wall: an inversion (a, b) such that π−1(a) = 1 + π−1(b). If (a, b) is the lower wall of a JI
π, then (a, b) · π = π∗. The lower walls of the JIs listed above are (1, 2), (2, 3), (1, 3), and
(1, 3), respectively. Nathan Reading introduced in [11] an elegant way of parametrizing
the JIs in Sn via arc diagrams.

Definition 1. A shard arc for Sn is the data of:

• an initial value i and a terminal value j, such that 1 ≤ i < j ≤ n, and

• for each intermediate value k with i < k < j, a choice of “left” or “right”.

We will depict shard arcs using arc diagrams, where an arc is drawn connecting the
initial value to the terminal value, and where “left” or “right” at k indicates whether the
arc passes over or under k, respectively. (There are many ways to draw such a diagram;
we use diagrams only as an abbreviation for the data of a shard arc, so different diagrams
indicating the same shard arc should be treated as equivalent.) The four shard arcs in
S4 with initial value 1 and terminal value 4 are shown in Figure 3. For space purposes,
we have drawn the arcs horizontally, though the “left/right” terminology more clearly
applies to arcs drawn vertically. To each shard arc for Sn, we assign a JI of the weak
order on Sn. This JI is the unique permutation π with the following properties:

• If the shard arc has initial value i and terminal value j, then the unique lower wall
of π is (i, j), and
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Figure 3: The arc diagrams for shard arcs in S4 with initial value 1 and terminal value
4. Below each diagram, we have indicated the associated JI in S4.

• For each intermediate value k, if we have chosen “left” at k, then π−1(k) < π−1(j),
and if we have chosen “right” at k, then π−1(k) > π−1(i).

In other words, the pair j, i should appear consecutively in the one-line notation for π,
and an intermediate value k should appear to the left or right of j, i according to whether
we have chosen “left” or “right”, respectively. The positions of non-intermediate values,
and the relative ordering of intermediate values, are determined by the requirement that
(i, j) is the unique lower wall of π. In Figure 3, we have indicated the JI associated to
each shard arc.

Shard arcs are also related to the geometry of the braid arrangement. Given a shard
arc for Sn, we will associate a convex polyhedral cone in the braid arrangement Bn. To
do so, define the half-spaces

H+
ab := {(x1, . . . , xn) | xa ≤ xb} H−

ab := {(x1, . . . , xn) | xa ≥ xb}.

Consider a shard arc with initial value i and terminal value j. For each intermediate
value k, we pick a sign for Hik and for Hkj, as follows:

“left” at k ⇒ H−
ik and H+

kj
“right” at k ⇒ H+

ik and H−
kj

.

The polyhedral cone is defined to be the intersection of Hij with the correctly signed
H±

ik for all intermediate k. The resulting cone Σ is called a shard of Bn. Shards are
characterized as (the closures of) the connected components of Hij \

⋃
i<k<j Hik. In B3,

there are four total shards: H12 and H23 are themselves shards, and H13 is the union of
two shards. In Figure 2, the two shards in H13 are the left and right halves of H13, which
intersect at the origin.

We have constructed bijections shards ⇔ shard arcs ⇔ JIs. Let’s discuss how to go
directly between JIs and shards. Given any permutation π, we can consider the region
of the braid arrangement πB. The lower walls (a, b) of π correspond to the hyperplanes
Hab in S(B, πB) which are incident to πB. (Hence the term “wall”.) We can refine this
further: if (a, b) is a lower wall of π, then there is a unique shard Σ contained in Hab
which is incident to the region πB. We say that Σ is a lower shard of πB. Hence there
is a bijection between the lower walls of π and the lower shards of πB. If π is a JI, then
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there is a unique lower wall of π, and the corresponding lower shard of πB comes from
the shard ⇔ JI bijection. As an example, consider the JI π = 231. Then the unique
lower wall of π is (1, 3), so the unique lower shard of πB should be contained in H13.
Examining Figure 2, we see that the unique lower shard of πB is the left half of H13,

which has shard arc 1 2 3. As expected, this is the shard arc associated to 231.
We have focused on JIs, but the notion of lower shards makes sense for any region of

the braid arrangement. For a general region, there will be multiple lower shards. We can
record the set of lower shards of πB in a diagram by overlaying the arc diagrams for each
shard arc. For instance, the permutation 321 has diagram 1 2 3 and the permutation
123 has the empty diagram 1 2 3. Reading showed [11] that any permutation can be
recovered from its arc diagram, and that the collections of shard arcs arising from this
construction are exactly the non-crossing arc diagrams: those collections that can be
drawn so no two shard arcs intersect or share an initial or terminal value.

3 Extended weak order and the affine symmetric group

Definition 2. The affine symmetric group S̃n is the group of bijections π̃ : Z → Z

satisfying:

(a) π̃(i + n) = π̃(i) + n for all i ∈ Z, and

(b)
n

∑
i=1

π̃(i) =
n

∑
i=1

i.

Elements of S̃n are affine permutations. The one-line notation of an affine permuta-
tion is defined similarly to a usual permutation, so that for instance the one-line notation
of the identity is: . . . ,−1, 0, 1, 2, 3, 4, 5, . . . . Condition (b) in Definition 2 lets us recover
an affine permutation from its one-line notation. We abbreviate affine permutations via
window notation: given a sequence of n integers x1, . . . , xn which have distinct residue
classes mod n, we write [x1x2 · · · xn] for the unique affine permutation whose one-line
notation contains x1, . . . , xn as a consecutive subsequence. For instance, in S̃3, the win-
dows [123] and [012] both represent the identity permutation, whereas [102] represents
the permutation . . . ,−3,−1, 1, 0, 2, 4, 3, 5, . . . .

The window notations for the elements of S̃2 are shown in black in Figure 4.

3.1 Extended weak order

Let (≺) be a total ordering of the integers (a relation which is transitive, asymmetric,
irreflexive, and so that for all distinct a, b ∈ Z, either a ≺ b or a ≻ b). The symbol < will
always denote the usual total ordering on the integers. If a, b ∈ Z are distinct modulo n,
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then we say that the pair (a, b) is an inversion of (≺) if a < b and b ≺ a. We write N(≺)
for the set of inversions of (≺).

Definition 3 ([1]). The extended weak order for S̃n is the poset whose elements are the
total orders (≺) of Z satisfying the following properties:

• For all i, j ∈ Z, we have i ≺ j if and only if i + n ≺ j + n, and

• For all i ∈ Z, if i + n ≺ i then there exists a k with i + n ≺ k ≺ i.

We say that (≺1) ≤ (≺2) in extended weak order if N(≺1) ⊆ N(≺2).

We call an element of extended weak order a translationally invariant total order
(TITO). Because we do not count the pair (0, n) as an inversion, the second condition in
Definition 3 is necessary to make it so any TITO is determined by its inversion set. To
see the issue, consider the following two total orderings which satisfy the first condition
of Definition 3 with n = 2:

· · · ≺ 0 ≺ 2 ≺ 4 ≺ · · · ≺ · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · (3.1)

· · · ≺ 4 ≺ 2 ≺ 0 ≺ · · · ≺ · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · .

These two total orders have the same inversion set. We resolve this by declaring the first
to be a TITO and the second to be not a TITO; alternatively, we could declare the two
total orders equivalent, and the resulting theory would be the same.

Because (a, b) is an inversion of (≺) if and only if (a + n, b + n) is an inversion of (≺),
we will identify the pairs (a, b) and (a + n, b + n). Hence

· · · ≺ −3 ≺ −4 ≺ −1 ≺ −2 ≺ 1 ≺ 0 ≺ 3 ≺ 2 ≺ 5 ≺ 4 ≺ 7 ≺ 6 ≺ · · · (3.2)

is a TITO for S̃4 with two inversions, (0, 1) and (2, 3). We note that using the window
notation [1, 0, 3, 2] is a reasonable way to encode this TITO. We will now extend window
notation to allow us to encode any TITO.

Observe that any TITO (≺) splits up into blocks: subintervals which are order-
isomorphic to the usual ordering on Z. The blocks of (3.1) are · · · ≺ 0 ≺ 2 ≺ 4 ≺ · · ·
and · · · ≺ −1 ≺ 1 ≺ 3 ≺ · · · , while there is a unique block for (3.2). The residue classes
mod n of integers appearing in distinct blocks are necessarily distinct. If a block con-
tains k residue classes, then we will use a window listing any k consecutive entries of the
block. We give each block its own window and separate them by the symbol ≺. So, for
instance, (3.1) has window notation [2] ≺ [1] and (3.2) has window notation [1, 0, 3, 2].
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[1, 2]

[2, 1]

[−1, 4]
[4,−1]

[0, 3]

[3, 0]
[−2, 5]

[2] ≺ [1][1] ≺ [2]

[2, 1]

[3, 0]

[0, 3]
[5,−2]

[1, 2]

[4,−1]
[−1, 4]

H̃01 H̃12

H̃03 H̃14

H̃05 H̃16

Figure 4: The Hasse diagram for ex-
tended weak order. Elements of weak
Bruhat order are shown in black, and
new elements from extended weak or-
der are in orange.

Figure 5: The intersection of the affine
braid arrangement B̃2 with a two-
dimensional subspace of R3.

There is one subtlety we haven’t yet addressed, which is blocks appearing “in reverse
order”. For example, consider the following TITO for S̃4:

· · · ≺ −3 ≺ −1 ≺ 1 ≺ 3 ≺ 5 ≺ 7 ≺ · · · ≺ · · · ≺ 6 ≺ 4 ≺ 2 ≺ 0 ≺ −2 ≺ −4 ≺ · · · . (3.3)

Based on what we have stated so far, the window notation of this TITO would be [1, 3] ≺
[2, 0]. However, this does not distinguish (3.3) from the TITO

· · · ≺ −3 ≺ −1 ≺ 1 ≺ 3 ≺ 5 ≺ 7 ≺ · · · ≺ · · · ≺ −2 ≺ −4 ≺ 2 ≺ 0 ≺ 6 ≺ 4 ≺ · · · .

To distinguish these, we will write the window notation for (3.3) as [1, 3] ≺ [2, 0]. What’s
going on here? It turns out there are exactly two ways to extend the consecutive sequence
2 ≺ 0 to a TITO block: either 0 is covered by 2 + 4, or 0 is covered by 2 − 4. Once we
make that choice, the rest of the block is uniquely determined. In general, we underline
a window to indicate that elements i of its block satisfy i ≺ i − n. If a window is not
underlined, then elements of its block satisfy i ≺ i + n. The TITOs for S̃2 are shown in
Figure 4.

3.2 The affine braid arrangement

The affine braid arrangement B̃n consists of hyperplanes H̃ab in Rn+1, for a < b integers
that are distinct modulo n. We write a general element of Rn+1 as (y, x1, . . . , xn). Then

H̃ab := {(y, x1, . . . , xn) ∈ Rn+1 | xa = xb},
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where we take the convention that xa+kn = xa + ky for any k ∈ Z. So for instance, in B̃3,
we have H̃−1,9 = {(y, x1, x2, x3) ∈ R4 | x2 − y = x3 + 2y}.

When we were studying the the symmetric group, there was a bijection between
elements of Sn and regions of Bn. This is no longer true for S̃n: we can see by comparing
Figure 4 and Figure 5 that there are more regions than elements of S̃n. One might wonder
if elements of the extended weak order biject with regions of B̃n. This fails in general.
To see the problem, let’s introduce the half-spaces

H̃+
ab := {(y, x1, . . . , xn) | xa ≤ xb} H̃−

ab := {(y, x1, . . . , xn) | xa ≥ xb}.

Given a TITO (≺), we say that H̃+
ab contains (≺) if a ≺ b, and similarly we say H̃−

ab
contains (≺) if a ≻ b. We write H(≺) for the collection of half-spaces containing (≺).
The geometry in Figures 4 and 5 suggests that the region associated to (≺) should be
the intersection of all the half-spaces in H(≺). When this intersection has points in
its interior, then this is a reasonable definition. But this is not always the case: for
instance, the S̃2 TITO with window notation [1] ≺ [2] is contained in the half-spaces
H̃−

01, H̃−
03, H̃−

05, . . . and the half-spaces H̃+
12, H̃+

14, . . .. The intersection of these half-spaces
is the line y = 0, which has empty interior. However, in this case every finite subset of
H(≺) has intersection with nonempty interior. (We say the TITO is weakly separable
in this case; see [1].) A more serious problem arises for the S̃4 TITO [0, 1] ≺ [3, 2]. This
is contained in the half-spaces H̃+

01, H̃+
14, H̃−

23, H̃−
36, whose intersection is contained in the

hyperplane y = 0. This TITO is not weakly separable.
We see that not every TITO has an associated region. However, every region does

have an associated TITO. Given a region R of B̃n, let H(R) be the collection of half-
spaces H̃±

ab such that R ⊆ H̃±
ab. Then H(R) is equal to H(≺) for a unique TITO (≺).

Uniqueness follows since we can recover the inversion set of (≺) from its set of containing
hyperplanes: N(≺) = {(a, b) | H̃−

ab ∈ H(≺)}. This is the analog of the fact that we can
recover the inversion set of a permutation π from the separating set S(B, πB).

3.3 Lattice structure

Like the weak order on Sn, the S̃n extended weak order is a complete lattice [1, 2]. We
can compute the join of a collection of TITOs in a similar fashion. Write T̃ := {(a, b) |
a < b, a ̸≡ b mod n} and T̃aug := {(a, b) | a < b}. If N ⊆ T̃aug, then we define the
augmented closure of N to be the minimal set Naug ⊇ N such that if a < b < c and
(a, b), (b, c) are both in Naug, then (a, c) is in Naug. If N ⊆ T̃ is a union of inversion sets,
then the closure of N is the set N := Naug ∩ T̃. Now, the join of a family of TITOs {≺i}i∈I

is the unique TITO with inversion set
⋃

i∈I N(≺i). Analogously, the meet of {≺i}i∈I has
inversion set (

⋂
i∈I N(≺i))

◦, where N◦ := T̃ \ (T̃ \ N) is the interior of N.
For example, let’s compute the join of [0, 3] and [2, 1] in the extended weak or-

der of S̃2. We have N([0, 3]) = {(0, 1)} and N([2, 1]) = {(1, 2)}. The augmented
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closure of the union {(0, 1), (1, 2)} contains (0, 2) since (0, 1), (1, 2) are both elements,
and it contains (1, 3) since (1, 2), (2, 3) are both elements. (Recall our convention that
(a, b) = (a + n, b + n).) Hence the augmented closure contains every pair, since it con-
tains (0, 1), (1, 3), (3, 5), . . . and (1, 2), (2, 4), (4, 6), . . . .

It follows that the closure N([0, 3]) ∪ N([2, 1]) is T̃. Hence the join [0, 3] ∨ [2, 1] is the
unique TITO with inversion set T̃, which is [2, 1].

3.4 Shards and arc diagrams

A TITO (≺) is completely join-irreducible if it cannot be written as a join of elements
strictly below (≺). This implies that (≺) covers a unique element, but is a stronger
condition in general. The only TITOs for S̃2 which are not completely join-irreducible
are [12], [1] ≺ [2], [2] ≺ [1], and [2, 1]. In this section JI will abbreviate “completely
join-irreducible element”.

The lower walls of a TITO (≺) are the inversions (a, b) so that b and a are consecutive
in the total order ≺. There exist TITOs, like [1] ≺ [2], which have no lower walls.
However, each JI has a unique lower wall. The goal of this section is to describe the
analog of arc diagrams which parametrizes the JIs.

Definition 4. A shard arc for S̃n is the data of:

• an initial value i and a terminal value j, such that 1 ≤ i ≤ n and i < j and i ̸≡ j
mod n, and

• for each intermediate value k with i < k < j, a choice of “left” or “right”.

These data are required to satisfy a condition which will be explained below.

We can depict these shard arcs in two ways. One is to simply draw an arc diagram
for Sj, where j is the terminal value of the arc. This would fully encode the data of the
shard arc. However, the conditions on the data are more well-motivated by drawing a
cyclic arc diagram: we arrange the numbers 1, . . . , n in a circle, and draw an arc starting
at i, proceeding clockwise around the circle until it is of length j − i, then terminating (at
a value congruent to j modulo n). At each intermediate value k, the arc passes k on the
outside or inside of the circle depending on whether we have chosen “left” or “right”,
respectively. Now we can state the condition on S̃n shard arc data: we must be able to
draw the cyclic arc diagram in this way without self-crossing.

The JI associated to a shard arc is the unique weak order-minimal TITO with lower
wall (i, j) and such that each intermediate value k satisfies k ≺ j if we chose “left” and
satisfies i ≺ k if we chose “right”. The TITOs associated to the shard arcs in Figure 6 are
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14

3 2

14

3 2
1 2 3 4 5 6 7

14

3 2

Figure 6: Two shard arcs. The arc
on the left starts at 2, ends at 5, and
passes 3 and 4 on the inside and out-
side, respectively. The arc on the right
starts at 1 and ends at 11.

Figure 7: On the left, a cyclic arc dia-
gram. On the right, a “straightened”
version of the diagram encoding the
same data. (Note that not all Sj arc di-
agrams give valid S̃n shard arcs.)

· · · ≺ 0 ≺ 1 ≺ −2 ≺ −1 ≺ 4 ≺ 5 ≺ 2 ≺ 3 ≺ 8 ≺ 9 ≺ 6 ≺ 7 ≺ · · ·
· · · ≺ 2 ≺ 7 ≺ −3 ≺ 0 ≺ 6 ≺ 11 ≺ 1 ≺ 4 ≺ 10 ≺ 15 ≺ 5 ≺ · · ·

and the TITO for the shard arc in Figure 7 is

· · · − 3 ≺ 1 ≺ 5 ≺ 9 ≺ · · · ≺ 6 ≺ 7 ≺ 2 ≺ 3 ≺ −2 ≺ −1 ≺ · · · ≺ −4 ≺ 0 ≺ 4 ≺ 8 ≺ · · · .

To construct the shard associated to a shard arc, for each intermediate value k, we
pick a sign for H̃ik and for H̃kj as follows:

“left” at k ⇒ H̃−
ik and H̃+

kj
“right” at k ⇒ H̃+

ik and H̃−
kj

.

The shard associated to the shard arc is then defined to be the cone Σ which is the
intersection of H̃ij with H̃±

ik for all intermediate k. Shards are characterized as (the
closures of) the connected components of H̃ij \

⋃
i<k<j H̃ik.

The map sending a JI to its associated shard has a geometric description. Let (≺) be a
JI with lower wall (a, b). If H(≺) = H(R) for some region R of H, then the hyperplane
H̃ab is incident to R. The shard Σ associated to (≺) is the unique shard contained in H̃ab
which is incident to R: we say Σ is a lower shard of R. However, there exist JIs which
do not come from regions, such as [1, 2] ≺ [3, 4]. Even in this case, Σ is characterized as
the unique shard of H̃ab which, for each intermediate k, is contained in H̃−

ak if and only
if (≺) is contained in H̃−

ak. Hence, despite the lack of a literal region to go with (≺), the
geometry still behaves as if Σ is the lower shard of a “quasi-region” associated to (≺).
The existence of such exotic JIs makes the following result even more surprising.

Theorem 2. These correspondences set up bijections

shards ⇔ shard arcs ⇔ JIs.
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Let i and j be the initial and terminal values of a shard arc datum. The JIs which are elements of
weak Bruhat order are those with shard arc data having either i < j < i + n, or else j > i + n
and we have chosen “right” at i + n.

In particular, the shard arc in Figure 7, or any shard with arc data having a choice
of “left” at i + n, does not have an associated join-irreducible element of weak Bruhat
order: we truly need to go to the extended weak order to explain these shards.
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