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Abstract. We use non-symmetric Cauchy kernel identities to get the laws of last pas-
sage percolation (LPP) models in terms of Demazure characters. The construction is
based on the restrictions of the RSK correspondence to augmented stair (Young) shape
matrices and rephrased in a unified way compatible with crystal bases.
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1 Introduction

We introduce the Demazure measure on nonnegative vectors corresponding to the di-
rected last passage percolation (LPP) model on matrices of Young shape, that is, nonneg-
ative integer matrices whose positive entries fit a Young shape. A nonnegative integer
vector is always in the Weyl orbit of some partition and therefore all nonnegative vectors
in a same Weyl orbit share the size of a largest entry which is the length of a longest
row of the unique partition in its orbit. When the Young shape is a rectangle, we recover
the Okounkov’s Schur measure [4, Chapter 4], [17] on the unique partition of each Weyl
orbit, corresponding to the LPP model on nonnegative integer matrices. Our main con-
tribution is the use of Demazure characters, in general, non symmetric polynomials, to
study LPP problems: this has only been carried out for models with more symmetries
using symmetric polynomials, in particular, Schur polynomials or Weyl characters or
geometric analogues as incarnations of Whittaker functions ([6, 7, 16, 19] and references
therein). Crystal theory allows the compatibility of Robinson–Schensted–Knuth (RSK)
correspondence with non-symmetric Cauchy identities by Lascoux [13] and thus, in par-
ticular, the Cauchy identity (1.1). This interpretation was discovered by Choi–Kwon [8]
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for the non-symmetric case on stair cases (3.1). We complete the picture with the trun-
cated and augmented stair shape. This extended abstract is organized in four sections.
In §2 we gather relevant definitions on crystals, in §3 present our contributions, and in
§4 provide an example for our main result. We refer the reader to the full version [3],
accepted for publication, for details and proofs, containing the results hereby presented.

Given two sets of indeterminates x = {x1, . . . , xm} and y = {y1, . . . , yn} the Cauchy
identity asserts that

m

∏
i=1

n

∏
j=1

1
1− xiyj

= ∑
λ∈Pmin(m,n)

sλ(x)sλ(y) (1.1)

where Pmin(m,n) is the set of partitions with at most min(m, n) parts and, for each such
partition λ, sλ(x) and sλ(y) are the Schur polynomials in the indeterminates x and y,
respectively. This identity has several interpretations, applications and generalizations
(see [9] and references therein). In particular, one can understand the left hand side as
the character of polynomial functions on the space Mm×n of matrices with m rows, n
columns and entries in Z≥0 and decompose this space into a direct sum of glm × gln
bimodules. The products of Schur functions sλ(x) and sλ(y) on the righthand side show
this approach as the characters of the tensor product of irreducibles finite dimensional
representations of highest weight λ for the linear Lie algebras glm(C) and gln(C). In
fact Mm,n is a realization of the the bicrystal of the symmetric space S(Cm ⊗ Cn) as a
(glm, gln)-module (see [8] and references therein). The identity (1.1) can also be proved
using the RSK correspondence [10, 18]. This is a one-to-one map ψ between the set
Mm,n and the set

⊔
λ∈Pmin(m,n)

SSYT(λ, m)× SSYT(λ, n) of pairs (P, Q) of semistandard
tableaux of the same shape λ, and entries in [m] := {1, . . . , m} and [n] := {1, . . . , n},
respectively. (The convention that we use agrees with that of Kashiwara [12] to which
we refer for another description of the RSK procedure and the connection with biwords.
See §4 and [10] for variations on RSK.) Regarding SSYT(λ, k) as the tableau realization
for the glk-crystal B(λ, k) of highest weight λ, then

ψ :Mm,n →
⊔

λ∈Pmin(m,n)

B(λ, m)× B(λ, n)

A 7→ ψ(A) = (P(A), Q(A)) (1.2)

is a (glm, gln)-bicrystal isomorphism where the bicrystal structure on Mm,n is afforded
from B(λ, m) × B(λ, n) by ψ−1, that is, by reverse column Schensted insertion. The
RSK correspondence has interesting properties. For each matrix A inMm,n, the greatest
integer p(A) obtained by summing up the entries in all the possible paths π starting at
position (1, n) and ending at position (m, 1) with steps←− or ↓

p(A) := max
π path in A

∑
(i,j)∈π

aij (1.3)
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coincides with the common largest row length of the tableaux P(A) and Q(A) in (1.2).
(We consider the paths which are compatible with the version of RSK that is used here.
See §4.) It is then natural to study percolation models based on the RSK correspondence
where random matrices whose entries follow independent geometric laws are consid-
ered [4]. This type of model, in the case of identical and independent geometric distri-
bution, has been deeply studied by Johansson in [11], who proved that the fluctuations
of the previous last passage percolation, once correctly normalized, are controlled by the
Tracy-Widom distribution (defined from the study of the largest eigenvalues of random
Hermitian matrices). The Schur measure, introduced by Okounkov based on the Cauchy
kernel identity, is an extension of the probability measure on the partitions correspond-
ing to the directed last passage percolation model with the independent and identical
geometric distribution of Johansson in [11], [4, Chapter 4]. Let ui, vj be real numbers in
[0, 1), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Considering an array W = {Wij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of independent random variables, with values in Z≥0, called weights, geometrically dis-
tributed as

P(Wij = k) = (1− uivj)(uivj)
k, for any k ∈ Z≥0, (1.4)

with parameter uivj,W is a random matrix with values inMm,n. We then get

P(W = A) =

(
∏

1≤i≤m,1≤j≤n
(1− uivj)

)
(uv)A

where (uv)A = ∏1≤i≤m,1≤j≤n(uivj)
ai,j . The Last Passage Percolation (LPP) time G of W

is defined to be the random variable G := p ◦W . Applying the RSK correspondence, its
properties and the Cauchy identity (1.1), one obtains the law of the random variable G,
for any k ∈ Z≥0, in terms of Schur polynomials,

P(G = k) = ∏
1≤i,j≤n

(1− uivj) ∑
λ∈Pmin(m,n)|λ1=k

sλ(u1, . . . , um)sλ(v1, . . . , vn)

where the sum is over partitions λ with largest part k. Johansson [11] has established this
result in the special case of identical geometric distribution, ui = vj =

√
q, 1 ≤ i, j ≤ n,

for a fixed q ∈]0, 1[, a special case of the Schur measure on partitions (see [4, Chapter 10]).
The RSK correspondence admits various generalizations and geometric versions which
can also be used to get interesting last passage percolation models involving symmetric
polynomials, in particular, characters of representations of Lie algebras other than gln
(symmetric with respect to the Weyl group) and geometric analogues [6, 7, 16, 19].

2 Crystal and Demazure modules

The finite dimensional irreducible polynomial representations of gln = gln(C) are pa-
rameterized by the partitions λ in Pn. To each partition λ ∈ Pn corresponds a finite
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dimensional representation V(λ) (or gln-module), and a crystal graph B(λ) which can
be regarded as the combinatorial skeleton of the simple module V(λ). The vertices of
B(λ) label a distinguished basis of V(λ). On the other hand, B(λ) has various combina-
torial realizations (i.e., vertex labelings) in terms of semistandard tableaux, Littelmann’s
paths [14] or semiskylines [15]. The (abstract) crystal B(λ) is a graph whose set of ver-
tices is endowed with a weight function wt : B(λ) → Zn and with the structure of a
coloured and oriented graph given by the action of the crystal operators f̃i and ẽi with

i ∈ I = [n − 1]. One has an oriented arrow b i→ b′ between two vertices b and b′ in
B(λ) if and only if b′ = f̃i(b) ⇔ b = ẽi(b′) in which case wt(b′) = wt(b)− αi, with αi
a simple root of gln. The crystal B(λ) is generated by the actions of the lowering (resp.
raising) operators f̃i (respect. ẽi) on the unique highest (resp. lowest) weight vertex bλ

(resp. bσ0λ) where one has wt(bλ) = λ, and σ0 is the longest element of the Weyl group
W here the symmetric group Sn =< s1, . . . , sn−1 > (unless mentioned differently).

For λ ∈ Pn, Wλ is the stabilizer of λ under the action of W, and Wλ collects the
unique minimal length representative of each coset in W/Wλ. Let λ ∈ Pn and σ ∈ W.
Up to a scalar in C, there exists a unique vector vσλ in V(λ) of weight σλ. Recall
the triangular decomposition gln = gl+n ⊕ h ⊕ gl−n of gln into its upper, diagonal and
lower parts. The Demazure module associated to vσλ is the U(gl+n )-module defined by
Vσ(λ) := U(gl+n ) · vσλ. Demazure introduced the character κσ,λ of Vσ(λ) and showed
that it can be computed by applying to xλ a sequence of divided difference operators
Di1 · · ·Di` given by any reduced decomposition of σ = si1 · · · si` ∈ W where ` is the
length of σ. For i ∈ I, Di is a certain linear operator on Z[x1, . . . , xn] (see [3] and
references therein) satisfying the relations

D2
i = Di for any i = 1, . . . , n− 1, DiDi+1Di = Di+1DiDi+1 for any i = 1, . . . , n− 2,

DiDj = DjDi for any i, j = 1, . . . , n− 1 such that |i− j| > 1.

Thus, by Mastumoto’s Lemma, the operator Dσ = Di1 · · ·Di` only depends on σ and
not on the chosen reduced decomposition, and κσ,λ = Dσ(xλ) ∈ Z[x1, . . . , xn] is the
(Demazure) character of Vσ(λ). In particular, we have κid,λ = xλ and κσ0,λ = sλ.

Kashiwara [12] and Littelmann [14] defined a relevant notion of crystals for the De-
mazure modules. Recall O(λ) = {σ · bλ = bσλ | σ ∈ W/Wλ} the orbit of the highest
weight vertex bλ of B(λ). Its elements, uniquely determined by their weight, are called
the keys of B(λ). (In this sense we may identify O(λ) with Wλ.) Given σ, σ′ ∈ W/Wλ,
we write σ ≤ σ′ for the Bruhat order on the cosets in W/Wλ to mean that their unique
minimal (maximal) coset representatives satisfy the same relation in the strong Bruhat
order restricted to Wλ. We also write bσλ ≤ bσ′λ when σ ≤ σ′ in W/Wλ. From the
dilatation of crystals [12] each vertex b of B(λ) carries a pair of keys K+(b) ≥ K−(b),
right, respectively, left key of b, in O(λ). For any σ ∈W, consider the Demazure atom

Bσ(λ) = {b ∈ B(λ) | K+(b) = bσλ}, where Bid(λ) = {bλ}. (2.1)
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For any σ ∈W, the opposite Demazure module, is defined to be Vσ(λ) := Uq(gl
−
n ) · vσλ, for

which we define the opposite Demazure atom

Bσ
(λ) = {b ∈ B(λ) | K−(b) = bσλ}, where Bσ0(λ) = {bσ0λ}. (2.2)

By definition we have Bσ(λ) = Bσ′(λ) and Bσ
(λ) = Bσ′

(λ) whenever σ and σ′ belong
to the same left coset of W/Wλ. We then get B(λ) =

⊔
σ∈Wλ

Bσ(λ) =
⊔

σ∈Wλ

Bσ
(λ). The

Demazure crystal Bσ(λ) and its opposite Demazure crystal Bσ(λ) are then defined by

Bσ(λ) =
⊔

σ′∈Wλ, σ′Wλ≤σWλ

Bσ′(λ) = {b ∈ B(λ) | K+(b) ≤ bσλ}, Bid(λ) = {bλ} (2.3)

Bσ(λ) =
⊔

σ′∈Wλ, σWλ≤σ′Wλ

Bσ′
(λ) = {b ∈ B(λ) | K−(b) ≥ bσλ}, Bσ0(λ) = {bσ0λ}. (2.4)

In particular, we have Bσ0(λ) = B(λ) = Bid(λ). We then note that for a given λ ∈ Pn,⊔
σ∈Wλ

Bσ
(λ)× Bσ(λ) = {(b, b′) ∈ B(λ)× B(λ) : K−(b) ≥ K+(b′)} ' B(2λ). (2.5)

We refer to [8], for the translation of (2.5) to the crystal of Lakshmibai-Seshadri paths.
The Demazure crystals respectively atoms and their opposite, are connected via the
Lusztig-Schützenberger involution ι on the crystal B(λ), a realization of the action of the
longest element of W on finite irreducible representations. The map ι is a set involution
on B(λ) reversing the arrows, flipping the labels i and n− i, and reversing the weight.
We then have K−(b) = σ0.K+(ι(b)) and we get

Bσ(λ) = ι(Bσ0σ(λ)), or equivalently Bσ0σ(λ) = ιBσ(λ), Bσ
(λ) = ι(Bσ0σ(λ)). (2.6)

Demazure (resp. opposite) crystals can also be generated by the actions of the lowering
(resp. raising) operators given by the reduced words in Wλ (resp. σ0Wλσ0) on the
highest (resp. lowest) vertex of B(λ). The Demazure character κσ,λ(x) of the Demazure
module Vσ(λ) satisfies κσ,λ(x) = ∑b∈Bσ(λ) xwt(b), and the opposite Demazure character

κσ
λ(x) for the opposite Demazure module Vσ(λ) satisfies κσ

λ(x) = ∑b∈Bσ(λ) xwt(b). Using
the involution ι and (2.6), we have κσ

λ(x1, . . . , xn) = κσ0σλ(xn, . . . , x1) and κσ
λ(x1, . . . , xn)

= κσ0σλ(xn, . . . , x1) = ∑b∈Bσ
(λ) xwt(b). Alternatively we may also label the Demazure

crystals and the Demazure characters of B(λ) directly by the elements in the orbit of λ,
Wλ. Given µ ∈ Wλ where µ = σλ and σ ∈ Wλ, we write Bµ, Bµ = ιBσ0µ instead of
Bσ(λ), Bσ(λ) respectively, and κµ, κµ = κσ0µ, κµ, κµ = κσ0µ instead of κσ,λ, κσ

λ and κσ,λ, κσ
λ

respectively. The operators Di act on Demazure characters κµ and Demazure atoms κµ

as follows

Di(κµ) =

{
κsiµ if µi > µi+1

κµ if µi ≤ µi+1,
Di(κµ) =


κsiµ + κµ if µi > µi+1

κµ if µi = µi+1

0, else.

(2.7)
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For i ∈ [n − 1], we define below ∆i and ∆̇i as operators on Demazure respectively
Demazure atom crystals to mimic the action of the operator Di on Demazure respec-
tively on Demazure atom charaters (2.7), and we then always have char(∆i(Bµ)) =
Di(κµ), and char(∆̇i(Bµ)) = Di(κµ),

∆i(Bµ) =

{
Bsiµ if µi > µi+1
Bµ otherwise,

∆̇i(Bµ) =


∆i(Bµ) = Bµ

⊔
Bsiµ if µi > µi+1

∆i(Bµ) = Bµ if µi = µi+1
∅ if µi < µi+1.

(2.8)

3 Non-symmetric Cauchy kernels, RSK on Young shapes
and LPP

We now consider last passage percolation models based on the non-symmetric Cauchy
kernel (3.1) as studied by Lascoux in [13] and its extensions to augmented stair shapes.
Demazure crystals with their opposite Demazure atoms, and certain parabolic subcrys-
tals will describe the image of RSK, as a bicrystal isomorphism, restricted to stair shape,
truncated stair shape and to augmented stair shape matrices. We detach the truncated
case from the general Young shape due to its more explicit as well interesting structure.

3.1 LPP, staircase and Demazure measure

The ordinary Cauchy identity (1.1) is then replaced by its non-symmetric analogue

∏
1≤j≤i≤n

1
1− xiyj

= ∑
µ∈Zn

≥0

κµ(x)κµ(y) (3.1)

where κµ(x) and κµ(y) are this time (opposite) Demazure atoms and Demazure charac-
ters in the indeterminates x and y (with m = n). These polynomials are not symmetric
in x and y. They correspond to characters of representations for subalgebras of the en-
veloping algebra U(gln). It was proved in [13] that the identity (3.1) can be obtained
by restricting the RSK correspondence ψ to the set of lower triangular matrices. (The
convention of our paper differs from that in [13] which considers matrices with nonzero
entries in positions (i, j) with 1 ≤ i + j ≤ n + 1 rather than lower-triangular matrices.)
Since then, other proofs have been proposed using combinatorial objects which explic-
itly carry the pairs of right and left keys [10]. More precisely, [1, Theorem 3, Corollary
2] uses the combinatorics of Mason’s semiskyline augmented fillings [15], and [8] uses
the combinatorics of crystal bases, in particular, the combinatorial model of Lakshmibai-
Seshadri paths [14]. Recently Assaf-Schilling provided an explicit tableau crystal for
MasonâĂŹs semiskyline augmented fillings [15], replacing the former objects by equiv-
alent ones, termed semistandard key tableaux (see [3] and references therein). Here we



Non-symmetric Cauchy kernels, Demazure measures, and LPP 7

stand in the tableau model for gln crystals where one has the effective Lascoux’s jeu de
taquin procedure [10] to compute the right key K+(T) and left key K−(T) of a tableau
T.

Let D be any subset of [n]× [m] and writeMD
m,n for the subset ofMm,n containing the

matrices A such that ai,j 6= 0 only if (i, j) ∈ D. For D in general, the setMD
m,n is not stable

for the glm × gln-crystals operators. Nevertheless, when D corresponds to the Young
diagram of a fixed partition Λ, see (3.7), D = DΛ is stable under the action of the crystal
raising operators. When m = n and $ = (n, n− 1, . . . , 1), we get in matrix coordinates
D$ = {(i, j) | 1 ≤ j ≤ i ≤ n}. Then the bijection ψ (1.2) restricts to a bijection from the set

MD$
m,n of n× n lower triangular matrices to the set of pairs (P, Q) of semistandard Young

tableaux of the same shape on the alphabet [n] such that K−(P) ≥ K+(Q) (entrywise
comparison). (See also [1, Corollary 2] for the Knuth version of RSK.) This means that
the image of this restriction, for a fixed λ ∈ Pn, is

⊔
σ∈Wλ

Bσ
(λ)× Bσ(λ) (2.5). Thus the

restriction of RSK correspondence ψ to D$ gives

ψ :MD$
n,n →

⊔
λ∈Pn

⊔
σ∈Wλ

Bσ
(λ)× Bσ(λ) (3.2)

A 7→ ψ(A) = (P(A), Q(A)) : K+(Q(A)) ≤ K−(P(A)), (3.3)

where Bσ(λ) is a Demazure crystal (2.3) and Bσ
(λ) its opposite Demazure atom (2.2).

This time, we only consider independent random variables Wi,j when 1 ≤ j ≤ i ≤ n with
geometric distributions as in (1.4). This defines a lower triangular random square matrix
L with nonnegative integer entries. In this model we consider paths from position (1, n)
to position (n, 1) where only the entries in the lower part of A contribute to the length
of the paths. We define the random variable L = p ◦ L and determine its law. Since
(3.2) gives a bijective correspondence obtained as the restriction of the RSK map ψ (1.2)
to lower triangular matrices, the value of L still corresponds to the length of the largest
part of the partitions on the right hand side of (3.3).

Theorem 1. For any k ∈ Z≥0, we have the law

P(L = k) = ∏
1≤j≤i≤n

(1− uivj) ∑
µ∈Zn

≥0|max(µ)=k
κµ(u1, . . . , un)κµ(v1, . . . , vn). (3.4)

This law was also obtained by Baik-Rains [5, 6, Section 4] when ui = vi. In this
case, (2.5), and (3.1) with xi = yi, together give a refinement of a Littlewood identity:
∏1≤j≤i≤n(1− xixj)

−1 = ∑µ∈Zn
≥0

κµ(x)κµ(x) = ∑λ∈Pn s2λ(x). In [6] it is called a law in the
point-to-line last passage percolation in zero temperature limit. However this formula is
not produced in [6] by the geometric RSK but rather one in terms of a symplectic Cauchy
like identity.
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3.2 Main results: LPP on Young shapes and Demazure measure

Lascoux [13] also established generalizations of the formula (3.1) where positions with
nonzero entries are allowed in the matrices outside their lower triangular part. These
augmented staircase formulas below (∗) were then obtained just by computations on
polynomials and thus not related to the RSK correspondence. This connection was par-
tially done in [2] where certain truncated staircases formulas are proved to be compat-
ible with the RSK correspondence using the combinatorics of semiskyline augmented
fillings [15]. More precisely, this applies to the case where nonzero entries are autho-
rized only in positions (i, j) with n − p ≤ i ≤ j ≤ q, for p and q two nonnegative
integers such that n ≥ q ≥ p ≥ 1. We consider the Young diagram Dp,q = {(i, j) |
n − p + 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∩ D$ defined by using the matrix coordinates (i, j).
It is the intersection of D$ with a quarter of plane defined by the lines i = p and
j = q (in Cartesian coordinates). When n − p + 1 ≤ q, we get the Young diagram
Dp,q = DΛ(p,q) with Λ(p, q) = (qn−q+1, q− 1, . . . , n− p + 1), and Dn,n = DΛ(n,n) = D$.
Below one illustrates the truncated Young shape DΛ(p,q), in green, fitting the p by q rect-
angle so that the staircase D$ of size n, in red, is the smallest one containing DΛ(p,q). If
p ≤ q, D(p,p−1,...,1) is the biggest staircase inside DΛ(p,q).

p
n

q

We write Bp(λ) for the subcrystal of the gln-crystal B(λ, 0n−p) with λ ∈ Pp, obtained
by keeping only the vertices connected to its highest weight vertex by i-arrows with
i ∈ [p− 1]. Given u ∈ Sp, Bp,u(λ), Bu

p(λ), Bp,u(λ) and Bu
p(λ) denote the Demazure, its

opposite, respectively, atom and its opposite crystals associated to u in the glp-crystal

Bp(λ). See Example 4 and (4.1), (4.2). The restriction of the map ψ from MD$
n,n (3.3) to

MDΛ(p,q)
n,n gives

ψ(MDΛ(p,q)
n,n ) =

⊔
λ∈Pn

⊔
σ∈Wλ

Bσ
(λ) ∩ Bp(λ)× Bσ(λ) ∩ Bq(λ) =

⊔
µ∈Zn

≥0

Bµ ∩ Bp(λ)× Bµ ∩ Bq(λ).

By the Borel-Weil theorem, Demazure crystals and Schubert varieties are in natural cor-
respondence. Let σ ∈ Sn and σ

[q]
0 be the longest element of Sq. From the Billey–

Fan–Losonczy parabolic map (see [3, Algorithm 3.1, Proposition 3.4] and references
therein) the set {v ∈ Sq | v ≤ σ} has a unique maximal element σIq for the Bruhat
order ≤ in W. For σ ∈ Wλ, the intersections S

σ
[q]
0
∩ Sσ = S

σIq and Bσ(λ) ∩ Bq(λ) =

Bσ(λ) ∩ B
σ
[q]
0
(λ) = Bq,σIq (λ) translate into each other, where Sσ is a Schubert variety of

the flag variety G/B with B a Borel subgroup of the reductive group G with Weyl group
W [10, Chapter III]. However Bσ

(λ) ∩ Bp(λ) = ∅ unless σ ∈ σ0S
λ
p , λ ∈ Pp and then
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Bσ
(λ) ∩ Bp(λ) = ιBp,σ0σ(λ) [3]. In this case Bσ(λ) ∩ Bq(λ) = Bq,σIq (λ). The restriction of

the RSK correspondence ψ toMDΛ(p,q)
n,n then gives a one-to-one correspondence

ψ :MDΛ(p,q)
n,n → ⊔

µ∈Z
p
≥0

ι(Bp,µ)× Bq,µ̃, and (3.5)

∏
(i,j)∈DΛ(p,q)

1
1− xiyj

= ∑
(µ1,...,µp)∈Z

p
≥0

κ(µp,...,µ1)
(xn, . . . , xn−p+1)κµ̃(y1, . . . , yq), (3.6)

where for each µ ∈ Z
p
≥0, the vector µ̃ = (σ0τ)Iq(λ, 0q−p, 0n−q) with τ ∈ Sλ

p is such that
µ = τλ. It can also be explicitly computed by a simple algorithm in [1, 3, Theorem
3.20] (see also examples in [3, Section 3.1]). One can then similarly use (3.5) to study the
percolation model on random matrices Tp,q with nonnegative random integer coefficients
having zero entries in each position (i, j) such that i ≤ n− p and j > q. Each random
variable Wi,j with i ≥ n− p + 1 and j ≤ q follows a geometric distribution of parameter
uivj. Using the same arguments as before, we obtain the law of the random variable
Tp,q = p ◦ Tp,q.

Theorem 2. For any nonnegative integer k, we have for v = (v1, . . . , vq)

P(Tp,q = k) = ∏
(i,j)∈DΛ(p,q)

(1− uivj) ∑
(µ1,...,µp)∈Z

p
≥0|max(µ)=k

κ(µp,...,µ1)
(un, . . . , un−p+1)κµ̃(v).

In [13] Lascoux gave other non-symmetric Cauchy type identities for any partition
Λ ∈ Pn. One considers the largest staircase ρΛ = (m, m − 1, . . . , 1) contained in the
Young diagram of Λ. Then one chooses a box at position (i0, j0), in Cartesian coordinates,
in the augmented staircase (m + 1, m, . . . , 1) which is not in Λ. The diagonal Li,j : j −
i = j0 − i0, in Cartesian coordinates, cuts Λ in a northwest part and a southeast part
corresponding to the boxes above and below Li,j, respectively. Now fill the boxes (i, j),
in the n× n matrix convention, of the NW part of Λ by n− i (i.e., by the n× n matrix
reverse row index (equivalently counting rows from bottom to top) minus one), and the
boxes (i, j) of the SE part by j − 1 (i.e., by the index of the column minus one). Let
σ(Λ, NW) = si1 · · · sia be the element of W where the word i1 · · · ia is obtained from
right to left column reading of the NW part of Λ, each column being read from top to
bottom. Similarly, let σ(Λ, SE) = sj1 · · · sjb be the element of W where the word j1 · · · jb
is obtained from top to bottom row reading of the SE part of Λ, each row being read
from right to left. For instance, let n = 8 and Λ = (7, 4, 2, 2, 2). Take (i0, j0) = (3, 3) (the
box with N). Hence m = 4, ρΛ = (4, 3, 2, 1), and σ(Λ, NW) = s4s3s4, σ(Λ, SE) = s3s6s5s4,

4 4
� 3
��N
��� 3
���� 4 5 6

(3.7)
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The following identity is established in [13] and reproved for near stair shapes in [2],

(∗) ∏
(i,j)∈Λ

1
1− xiyj

= ∑
(µ1,...,µm)∈Zm

Dσ(Λ,NW)κ(µm,...,µ1)
(xn, . . . , xn−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(y),

where y = (y1, . . . , ym), and Dσ(Λ,NW) = Di1 · · ·Dia , Dσ(Λ,SE) = Dj1 · · ·Djb are composi-
tions of Demazure operators (2.7).

Theorem 3. The restriction of the RSK correspondence ψ to MDΛ
n,n gives the one-to-one corre-

spondence

ψ :MDΛ
n,n →

⊔
(µ1,...,µm)∈Zm

≥0

ι
(

∆̇σ(Λ,NW)(B(µm,...,µ1)
)
)
× ∆σ(Λ,SE)

(
B(µ1,...,µm)

)
(3.8)

where ∆σ(Λ,SE) = ∆j1 · · ·∆jb and ∆̇σ(Λ,NW) = ∆̇i1 · · · ∆̇ia (2.8). (As usual ∅×U = ∅.)

Now, for a fixed partition Λ in Pn, we consider random matrices AΛ with nonneg-
ative random integer coefficients having zero entries in each position (i, j) such that
(i, j) /∈ Λ. Here again each random variable Wi,j for (i, j) ∈ Λ follows a geometric dis-
tribution of parameter uivj. Define the random variable AΛ = p ◦ AΛ. Then, by (∗) and
(3.8), we get the law of AΛ.

Theorem 4. For any nonnegative integer k,

P(AΛ = k) = ∏
(i,j)∈DΛ

(1− uivj).

. ∑
(µ1,...,µm)∈Zm|max(µ)=k

Dσ(Λ,NW)κ(µm,...,µ1)
(un, . . . , un−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(v1, . . . , vm).

4 An example for RSK on augmented stair shapes

Let us resume to the setting of (3.7) with n = 8, Λ = (7, 4, 2, 2, 2), and σ(Λ, NW) = s4s3s4,
σ(Λ, SE) = s3s6s5s4. Let ψ be the RSK restricted toMDΛ

8,8 . Then (3.8) gives for m = 4

ψ :MD(7,4,2,2,2)
8,8 → ⊔

(µ1,...,µ4)∈Z4
≥0

ι
(

∆̇4∆̇3∆̇4(B(µ4,...,µ1)
)
)
× ∆3∆6∆5∆4

(
B(µ1,...,µ4)

)
A 7→ ψ(A) = (P, Q).

Let A=


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0
0 0 0 0 1 0 2 0

∈M
DΛ
8,8 encoded as a tensor product of row tableaux 577⊗ 45⊗ 7⊗

7⊗ 8⊗∅⊗ 88⊗∅ on the alphabet [8] where ai,j is the number of letters i in the tensor j-
th component. One then applies the column insertion procedure from left to right. This
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means that we begin by reading the first column (of A) 775 and compute the column
insertions 5→ 7→ 7 to get 577 then read the second column 54 and compute the column
insertion 4 → 5 → 577 to get 45577, then 7 → 45577 to get 7

4 5 5 7 7 , and eventually get
the tableau P below. The "recording tableau" Q is obtained by filling with letters j the
new boxes appearing during the insertion of column j of A,

P =
8 8
7 7 8
4 5 5 7 7

K−(P) =
8 8
7 7 8
4 4 4 4 4

= K(03, 5, 02, 2, 3) (4.1)

Q =
5 7
3 4 7
1 1 1 2 2

K+(Q) =
7 7
4 4 7
2 2 2 2 2

= K(0, 5, 0, 2, 02, 3, 0). (4.2)

We show that there exists µ = (µ1, µ2, µ3, µ4) ∈ Z4
≥0 such that ψ(A) = (P, Q) ∈

ι(∆̇4∆̇3∆̇4B(σ0µ,04))× ∆3∆6∆5∆4B(µ,04), where σ0 ∈ S4 and ι is the Schützenberger (evacu-
ation) involution. From (2.8) one has ι(∆̇4∆̇3∆̇4B(µ4,...,µ1,04)) =

=



ιB(µ4,µ3,µ2,0,04)

⊔
ιB(µ4,µ3,0,µ2,04)

⊔
ιB(µ4,µ3,02,µ2,03), if µ2 > µ1 = 0 (∗∗)

ιB(µ4,µ3,0,0,04), if µ1 = µ2 = 0

ιB(µ4,µ3,µ2,µ2,04)

⊔
ιB(µ4,µ3,µ2,0,µ2,03)

⊔
ιB(µ4,µ3,0,µ2,µ2,03), if µ1 = µ2 > 0

∅, if µ1 > µ2 ≥ 0
ιB(µ4,...,µ1,04)

⊔
ιB(µ4,µ3,µ1,µ2,04)

⊔
ιB(µ4,µ3,µ2,0,µ1,03)

⊔
ιB(µ4,µ3,0,µ2,µ1,03)

⊔
ιB(µ4,µ3,0,µ1,µ2,03)⊔

ιB(µ4,µ3,µ1,0,µ2,03), if µ2 > µ1 > 0.

Then, by (2.2), K−(P) = K(03, 5, 02, 2, 3) ⇔ P ∈ B(03,5,02,2,3)
= ιB(3,2,02,5,03), and we

are in case (∗∗), where µ2 = 5 > µ1 = 0, µ3 = 2, µ4 = 3. Hence, µ = (0, 5, 2, 3)
and ι(∆̇4∆̇3∆̇4B(3,2,5,0,04)) = ιB(3,2,5,0,04)

⊔
ιB(3,2,0,5,04)

⊔
ιB(3,2,02,5,03). Therefore, by the LHS

of (2.8), ∆3∆6∆5∆4B(µ,04) = B(0,5,0,2,0,0,3,0). Indeed K+(Q) ≤ K(0, 5, 0, 2, 02, 3, 0) and

from (2.4), Q ∈ B(0,5,0,2,02,3,0). Hence, (P, Q) ∈ B(03,5,02,2,3) × B(0,5,0,2,02,3,0) and ψ(A) ∈
ι(∆̇4∆̇3∆̇4B(3,2,5,0,04))× ∆3∆6∆5∆4B(0,5,2,3,04).
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