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Character factorisations, z-asymmetric partitions,
and plethysm
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Abstract. An old theorem of D. E. Littlewood asserts that the Schur function with
variables “twisted” by a primitive t-th root of unity vanishes unless the t-core of the
indexing partition is empty, in which case it factors as a product of Schur functions
indexed by the t-quotient. Recently, Ayyer and Kumari generalised Littlewood’s result
to characters of the classical groups O(2n, C), Sp(2n, C) and SO(2n + 1, C). We show
that Ayyer and Kumari’s results may be lifted to the universal characters of the asso-
ciated groups, and in doing so give a uniform extension involving a determinant of
Bressoud and Wei which was later generalised by Hamel and King. What facilitates
this extension is a new property of the Littlewood decomposition, extending results
of Garvan, Kim and Stanton. We also explain the connection between Littlewood’s
original result and an instance of plethysm.

Keywords: Littlewood’s decomposition, Schur functions, t-core, t-quotient, universal
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1 Introduction

In his classic 1940 book on group characters D. E. Littlewood gives a factorisation for the
Schur function with variables “twisted” (not his term) by a primitive t-th root of unity
ζ [13, §7.3]. More precisely, he proves that the Schur function sλ with tn variables ζ jxi
for 1 ⩽ i ⩽ n and 0 ⩽ j ⩽ t − 1 vanishes if the t-core of λ is nonempty. If the t-core
is empty then, up to a sign, it factors as a product of Schur functions indexed by the
partitions forming its t-quotient, each with variables xt

1, . . . , xt
n. His proof is based on a

clever manipulation of the classical definition of sλ as a ratio of alternants.
Inspired by a recent rediscovery of Littlewood’s theorem, Ayyer and Kumari proved

analogous factorisation theorems for the characters of the classical groups O(2n, C),
Sp(2n, C) and SO(2n + 1, C) using Littlewood’s method [3]. As in the Schur case, when
these twisted characters are nonzero they factor as a product of other group characters
expressed in terms of the t-quotient of the indexing partition. However, the vanishing
is now governed by the t-core having a particular form. Specifically, Ayyer and Kumari
show that the twisted characters for O(2n, C), Sp(2n, C) and SO(2n + 1, C) are nonzero
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if and only if t-core(λ) may be written in Frobenius notation as (a + z | a) for z = 1, −1
and 0 respectively; see the next section for the relevant definitions.

In [2] we lifted the results of Ayyer and Kumari to the universal characters of the
aforementioned groups as defined by Koike and Terada [11]. To describe how this works,
let hr denote the r-th complete homogeneous symmetric function, the set of which is
algebraically independent over Z and generates Λ, the ring of symmetric functions. The
notion of “twisting” by a root of unity is replaced by an endomorphism φt of Λ for each
integer t ⩾ 2, defined by

φthr =

{
hr/t if t divides r,
0 otherwise.

This operator is occasionally referred to as the t-th Verschiebung operator, see for instance
[7, §2.9] and references therein.1 It is a quite a natural operator on symmetric functions,
being the adjoint of plethysm by a power sum pt with respect to the Hall scalar product;
see Subsection 3.1. The main results of [2] are the action of φt on the universal characters.

In the present work we outline a new approach to proving these universal character
factorisations. Following Ayyer and Kumari we call partitions which for z ∈ Z may
be expressed in Frobenius notation as (a + z | a) z-asymmetric. Bressoud and Wei [4]
and Hamel and King [8] have defined a general symmetric function Xλ(z) which essen-
tially reduces to the above universal characters for z = 1, −1 or 0. They also show that
Xλ(z) may be expressed as a signed sum over skew Schur functions with inner shape
a z-asymmetric partition. Using this expression and the action of φt on the skew Schur
functions (Theorem 4) we can compute φtXλ(z). This is one of our main results, which,
in order to keep things as simple as possible, we state only for 0 ⩽ z ⩽ t − 1 as Theo-
rem 6 below. The cases z ⩾ t and z < 0 require slightly cumbersome modifications, but
no new techniques, so we defer these to future work [1]. The main advantage of our
approach is that it produces a parameterised family of such factorisations which may be
stated and proved uniformly. A key tool in our proof is the Littlewood decomposition, a
bijection which maps a partition to its t-core and t-quotient. Our first main result, The-
orem 2, is a characterisation of the Littlewood decomposition of z-symmetric partitions
through restrictions on the core and quotient, which reduces to results of Garvan, Kim
and Stanton for z = 0, 1 [6].

2 Littlewood’s decomposition and z-asymmetric partitions

2.1 Preliminaries

A partition is a weakly decreasing sequence of nonnegative integers λ = (λ1, λ2, λ3, . . . )
such that the size |λ| := λ1 + λ2 + λ3 + · · · is finite. The nonzero λi are called parts

1Verschiebung is German for shift.
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and the number of parts the length, denoted l(λ). The set of all partitions is written P
and the empty partition, the unique partition of 0, is denoted by ∅. We write (mℓ) for
the partition with ℓ parts equal to m, and the difference λ − (mℓ) is then the partition
obtained by subtracting m from the first ℓ parts of λ. We identify a partition with its
Young diagram, which (in English notation) is the left-justified array of cells consisting of
λi cells in row i with i increasing downward. An example is given in Figure 1. We define
the conjugate partition λ′ by reflecting the diagram of λ in the main diagonal, so that the
conjugate of (6, 5, 5, 1) is (4, 3, 3, 3, 3, 1).

The Frobenius rank of a partition, d(λ), is defined as the number of cells along its main
diagonal. Another way to notate partitions is with Frobenius notation, which records the
number of cells to the right of and below each cell on the main diagonal, which we write
in terms of the partition λ as λ = (λ1 − 1, . . . , λd(λ) − d(λ) | λ′

1 − 1, . . . , λ′
d(λ) − d(λ));

again, see Figure 1 for an example. Any two strictly decreasing nonnegative integer
sequences a, b with the same number of elements, say k, thus give a unique partition
λ = (a | b) of Frobenius rank k. Clearly self-conjugate partitions are those of the form
(a | a). Now let a + z := (a1 + z, . . . , ak + z) for any z ∈ Z. Ayyer and Kumari [3] define
what they call z-asymmetric partitions to be those of the form (a + z | a) for any sequence
a (of any length) and fixed z ∈ Z. The set of z-asymmetric partitions is denoted by Pz
and (6, 5, 5, 1) in Figure 1 is 2-asymmetric.

9 7 6 5 4 1
7 5 4 3 2
6 4 3 2 1
1

Figure 1: The partition λ = (6, 5, 5, 1) = (5, 3, 2 | 3, 1, 0) with its main diagonal shaded
(left) and the same partition with hook length of each cell inscribed (right). We have
|λ| = 17, l(λ) = 4 and d(λ) = 3.

Given a cell s in the Young diagram of λ its hook length is one more than the sum of
the number of cells below and to the right of s; see Figure 1. For an integer t ⩾ 2 we
say a partition is a t-core if it contains no cell with hook length t (or, equivalently, no cell
with hook length divisible by t). For a pair of partitions λ, µ we say µ is contained in λ,
written µ ⊆ λ, if its Young diagram may be drawn inside the Young diagram of λ. The
corresponding skew shape is the arrangement of cells formed by removing µ’s diagram
from λ’s. A skew shape is a ribbon if it is edge-connected and contains no 2 × 2 square
of cells, and a t-ribbon is a ribbon containing t cells.2 The height of a ribbon R, ht(R), is
one less than the number of rows it occupies; see Figure 2.

2Elsewhere in the literature ribbons are variously called border strips, rim hooks or skew hooks.
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Figure 2: The pair of partitions (4, 4, 2, 1) ⊆ (6, 5, 5, 1). The unshaded cells form a
6-ribbon of height 2.

We say a skew shape λ/µ is t-tileable if there exists a sequence of partitions

µ =: ν(0) ⊆ ν(1) ⊆ · · · ⊆ ν(m−1) ⊆ ν(m) := λ

such that the skew shapes ν(r)/ν(r−1) are each t-ribbons for 1 ⩽ r ⩽ m. It is a non-trivial
fact, see, e.g. [17, Lemma 4.1], that the sign

sgnt(λ/µ) := (−1)∑m
r=1 ht(ν(r)/ν(r−1)) (2.1)

is constant over the set of all t-ribbon decompositions of λ/µ (so, indeed, the above is
well-defined).

2.2 Littlewood’s decomposition

The Littlewood decomposition is, for each integer t ⩾ 2, a bijection which decomposes
a partition λ into a pair (t-core(λ), λ), where t-core(λ) is the unique t-core of λ and
λ = (λ(0), . . . , λ(t−1)) is a t-tuple of partitions called the t-quotient [14]. Here we describe
the Littlewood decomposition through the lens of Maya diagrams, which is essentially
the abacus model of James and Kerber [9, §2.7]. A purely algebraic description may be
found in [16, p. 12].

Given a partition λ its Maya diagram is the following subset of the set of half integers,
sometimes called the beta set

β(λ) :=
{

λi − i +
1
2

: i ⩾ 1
}

.

This is visualised as a configuration of “beads” on the real line placed at the positions
indicated by β(λ). The map from partitions to Maya diagrams is clearly a bijection, and
one way to reconstruct λ from β(λ) is to count the number of empty spaces to the left
of each bead starting from the right. From the Maya diagram we extract t subdiagrams
formed by the beads at positions x such that x − 1/2 is r modulo t for 0 ⩽ r ⩽ t − 1,
which we dub the t-Maya diagram. An example of this procedure is given in Figure 3.
The corresponding partitions are denoted by λ(r) according to the residues modulo t of
the original positions, and these precisely form Littlewood’s t-quotient.
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The key observation behind the definition of the t-core is that moving a bead one
space to the left in the t-Maya diagram is equivalent to the removal of a t-ribbon from λ

such that what remains is still a partition. Since such ribbons are in correspondence with
hooks of length t in λ, pushing all beads to the left leaves a t-core. The t-Maya diagram
shows that this is independent of the order in which such ribbons are removed, and so
the resulting unique partition is denoted t-core(λ).

Theorem 1 (Littlewood’s decomposition). For any integer t ⩾ 2 the above procedure encodes
a bijection

P −→ Ct ×P t

λ 7−→
(
t-core(λ), (λ(0), . . . , λ(t−1))

)
such that |λ| = |t-core(λ)|+ t(|λ(0)|+ · · ·+ |λ(t−1)|).

λ(0)

λ(1)

λ(2)

λ

Figure 3: The Maya diagram of λ = (6, 5, 5, 1) (top) and the 3-Maya diagram of the
same partition (bottom). We have that 3-core(λ) = (1, 1), κ3((1, 1)) = (1,−1, 0) and
(λ(0), λ(1), λ(2)) = ((1),∅, (2, 2)).

We will also need a different characterisation of t-cores. Call a Maya diagram balanced
if it contains as many beads to the right of 0 as empty spaces to the left. The way we
defined Maya diagrams ensures they are always balanced, but Figure 3 shows that the
constituent diagrams of the quotient need not be. Let c+r (resp. c−r ) denote the number of
beads to the right of 0 (resp. number of empty spaces to the left of 0) in row λ(r) of the t-
Maya diagram. Now the sequence of integers (c0, . . . , ct−1) defined by cr := c+r − c−r has
total sum zero, and is invariant under valid bead movements. As observed by Garvan,
Kim and Stanton, this encodes a bijection [6, Bijection 2]

κt : Ct −→ {(c0, . . . , ct−1) ∈ Zt : c0 + · · ·+ ct−1 = 0} (2.2)

such that for µ ∈ Ct

|µ| =
t−1

∑
r=0

(
tc2

r
2

+ rcr

)
.
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The conjugate of a partition λ can be read off its Maya diagram by interchanging
beads and empty spaces and then reflecting the picture about 0. Using this fact one
may show that t-core(λ′) = t-core(λ)′ which, if κt(t-core(λ)) = (c0, . . . , ct−1), trans-
lates to κt(t-core(λ′)) = (−ct−1, . . . ,−c0) in terms of (2.2). Moreover, the quotient of λ′

is given by ((λ(t−1))′, . . . , (λ(0))′). From these properties it is easy to see that the Lit-
tlewood decomposition of a self-conjugate partition must satisfy t-core(λ) ∈ P0, i.e.,
cr + ct−r−1 = 0 for 0 ⩽ r ⩽ t − 1 and λ(r) = (λ(t−r−1))′ for r in the same range. Garvan,
Kim and Stanton [6, §8] show that something similar holds for 1-asymmetric partitions.
That is, if λ ∈ P1 then t-core(λ), λ(0) ∈ P1 and the remaining entries in the quotient
satisfy λ(r) = (λ(t−r))′ for 1 ⩽ r ⩽ t − 1.

Our first main result is a generalisation of the theorems of Garvan, Kim and Stanton
to z-asymmetric partitions. To keep things simple we restrict to 0 ⩽ z ⩽ t − 1, with
negative z being obtained by conjugation and larger values of z requiring only a minor,
but slightly cumbersome, modification. To fix some notation, let Cz;t ⊂ Zt consist of
those sequences for which cr + cz−r−1 = 0 for 0 ⩽ r ⩽ z − 1 and cs + ct+z−s−1 = 0 for
z ⩽ s ⩽ t − 1. Also let dc(λ) denote the Frobenius rank of the partition obtained by
removing the first c rows of λ.

Theorem 2. Let t ⩾ 2 and z be integers and λ a partition such that 0 ⩽ z ⩽ t − 1 and λ ∈ Pz.
Then κt(t-core(λ)) ∈ Cz;t and the quotient (λ(0), . . . , λ(t−1)) is such that for 0 ⩽ r ⩽ z − 1
with cr ⩾ 0 there exists a partition ν(r) with3

λ(r) = ν(r) + (1cr+dcr (ν
(r))) and λ(z−r−1) = (ν(r))′ + (1dcr (ν

(r))). (2.3a)

Moreover, for z ⩽ s ⩽ t − 1.

λ(s) = (λ(t+z−s−1))′. (2.3b)

Before we comment on the proof of this characterisation an example is in order. Let
t = 5, z = 3 and λ = (21, 17, 16, 15, 12, 11, 6, 6, 5, 4, 4, 4, 3, 2, 1, 1, 1, 1), or, in Frobenius
notation, λ = (20 15 13 11 7 5 | 17 12 10 8 4 2). Then 5-core(λ) = (6, 5, 3, 2, 1, 1, 1, 1)
which has associated integer vector (2, 0,−2, 1,−1) ∈ C3,5 and the quotient is given by(

λ(0), λ(1), λ(2), λ(3), λ(4)) = (
(3, 3, 2), (3, 1), (4, 2), (2), (1, 1)

)
. (2.4)

The reader may check the conditions (2.3) are satisfied by looking at Figure 4.
Note that if z is even then the r = z/2 case of (2.3a) just says that λ(z/2) is 1-

asymmetric. This this it is clear that the 0- and 1-asymmetric cases are contained in
the theorem. However, as the above example shows, not all cores with image in Cz;t
are themselves z-asymmetric. The following corollary clarifies when the t-core of a
z-asymmetric partition is again z-asymmetric, the first part of which is essentially con-
tained in [3, Lemma 3.6].

3If cr = 0 then ν(r) = (ν(z−r−1))′ is forced by (2.3a).
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Figure 4: Young diagrams representing the 5-quotient (2.4). Note that c0 = 2 so
dc0(λ

(0)) = 1, ν(0) = (2, 2, 1) and ν(1) = (2, 1). The highlighted cells in the first and
third partitions denote those subtracted when verifying (2.3a).

Corollary 3. A t-core µ is z-asymmetric if and only if κt(µ) satisfies cr = 0 for 0 ⩽ r ⩽ z − 1.
Moreover, for any sequence c ∈ Cz;t the unique z-asymmetric partition µc with κt(t-core(µc)) =

c and minimal |µc| has quotient µ
(r)
c = (1cr) for those r with 0 ⩽ r ⩽ z − 1 and cr > 0.

Proof. By Theorem 2 a z-asymmetric partition µ must have κt(t-core(µ)) ∈ Cz;t and λ(r) =
∅ for all 0 ⩽ r ⩽ t − 1. However, the restrictions (2.3a) admit the empty partition as a
solution if and only if cr = 0. The second part of the corollary is then immediate.

Theorem 2 may be proved by induction on z. For z ⩾ 1 there is an obvious bijection
from Pz−1 to Pz which adds one to the first d(λ) parts of λ. We imagine the t-Maya
diagram is wrapped around a cylinder, so that this bijection pushes the beads at positive
positions up one row, and additionally moves the beads passing from row t − 1 to row
0 one space to the right. This leads to an extension of Theorem 2 for z ⩾ 0, and to
this end we say a pair of partitions satisfying (2.3a) are 1-conjugate. Then one writes
z = at + b for a ⩾ 0 and 0 ⩽ b ⩽ t − 1, so that the generalisation of Theorem 2 claims
that t-core(λ) ∈ Cb;t, and the partitions in (2.3a) will now be (a + 1)-conjugate and those
in (2.3b) a-conjugate [1].

3 Factorisations of universal characters

3.1 Symmetric functions and plethysm

As mentioned in the introduction, the ring of symmetric functions Λ has an algebraic
basis given by the complete homogeneous symmetric functions, which for a countably infinite
alphabet X = (x1, x2, x3, . . . ) may be defined by the generating function

∏
i⩾1

1
1 − uxi

= ∑
k⩾0

ukhk(X).

The most important linear basis for Λ is given by the Schur functions sλ, which we define
at the generality of skew shapes by the Jacobi–Trudi determinant

sλ/µ := det
1⩽i,j⩽l(λ)

(hλi−µj−i+j), (3.1)
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where h−k := 0 for k ⩾ 1. There is an inner product on Λ, the Hall inner product, under
which the sλ are orthonormal, so

⟨sλ, sµ⟩ = δλµ

with δλµ the usual Kronecker delta.
Plethysm is a composition of symmetric functions first introduced by Littlewood

which we denote by f ◦ g for f , g ∈ Λ; see, e.g., [16, §1.9]. We only require the case
where g = pt(X) := ∑i⩾1 xt

i , the t-th power sum. This may most easily be defined by ex-
panding f as a sum of monomials in X and then replacing each xi by xt

i . This particular
plethysm satisfies f ◦ pt = pt ◦ f and ps ◦ pt = pst for s, t ∈ N. Another way to define
the operator φt is as the adjoint of the plethysm by a power sum with respect to the Hall
inner product, i.e., for any f , g ∈ Λ,

⟨ f ◦ pt, g⟩ = ⟨ f , φtg⟩. (3.2)

This may also be verified directly using, for instance, the orthonormality of the complete
homogeneous and monomial symmetric functions.

As alluded to in the introduction, the content of [13, §7.3] is the computation of the
action of φt on the Schur basis.4 Later on, Farahat generalised this result to skew Schur
functions of the form sλ/t-core(λ) [5], and the full skew Schur function case may be found
in [16, p. 91]. Here the notion of “empty t-core” is replaced by the requirement that
λ/µ is t-tileable. This is equivalent to t-core(λ) = t-core(µ) and λ(r) ⊇ µ(r) for each
0 ⩽ r ⩽ t − 1 [2, Lemma 2.1].

Theorem 4. For any integer t ⩾ 2 and skew shape λ/µ we have that φtsλ/µ = 0 unless λ/µ is
t-tileable, in which case

φtsλ/µ = sgnt(λ/µ)
t−1

∏
r=0

sλ(r)/µ(r) ,

where the sign is defined in (2.1).

It is our opinion that this theorem has been somewhat neglected, and deserves to be
better known. Although we will not give a full account its history here, the interested
reader may find a few historical remarks in [2, §3] and its references. Using the Jacobi–
Trudi formula (3.1) and the algebraic description of the t-core and t-quotient the proof
is relatively straightforward, with the only difficulty being the identification of the sign.

One of the first applications of Littlewood’s core and quotient construction is to the
plethysm sλ ◦ pt which is now referred to as the SXP rule [14, p. 351].

4In his book [13] Littlewood does not use the language of cores and quotients, nor the map φt, and
they appear only implicitly.
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Theorem 5. Let cλ
ν(0),...,ν(t−1) be the coefficient of sλ in the Schur expansion of the product

sλ(0) · · · sλ(t−1) . Then for any t ⩾ 2,

sλ ◦ pt = ∑
ν

t-core(ν)=∅

sgnt(ν)c
λ
ν(0),...,ν(t−1)sν.

By the adjoint relation (3.2) this is equivalent to Theorem 4 with µ = ∅. Wildon has
given a generalisation of the SXP rule for the expression sτ(sλ/µ ◦ pt) [19], which may be
derived from the full Theorem 4 in the same manner. Littlewood proved versions of the
SXP rule for orthogonal and symplectic characters in the cases t = 2, 3 [15], and these
were given lifts to the universal characters by Scharf and Thibon [18]. Lecouvey then
greatly extended this by proving SXP rules for the universal symplectic and orthogonal
characters for arbitrary t ⩾ 2 [12]. Using the adjoint relation (3.2), one can show that
these expressions are equivalent to special cases of our Theorem 6 below.

3.2 Generalised universal characters

For a finite set of n variables the Schur function sλ(x1, . . . , xn) may be regarded as the
character of the irreducible polynomial representation of GL(n, C) indexed by λ. The
classical groups O(2n, C), Sp(2n, C) and SO(2n + 1, C) also carry irreducible represen-
tations indexed by partitions. The characters of these representations are rather sym-
metric Laurent polynomials in n variables, however they may still be expressed as de-
terminants in the complete homogeneous symmetric functions hr(x1, 1/x1, . . . , xn, 1/xn).
Using these expressions, Koike and Terada defined the universal characters of the above
groups, which are lifts of the characters to symmetric functions, and proved some expan-
sions in terms of skew Schur functions [11, Theorem 2.3.1]. For example the universal
character of O(2n, C) satisfies

oλ := det
1⩽i,j⩽l(λ)

(hλi−i+j − hλi−i−j) = ∑
µ∈P1

(−1)|µ|/2sλ/µ. (3.3)

with similar identities for the universal characters spλ and soλ as sums over −1- and
0-asymmetric partitions respectively.

In [4] Bressoud and Wei proved an extension of (3.3) involving an integer z ⩾ −1
which reproduces the classical cases for z ∈ {−1, 0, 1}. This was generalised further
by Hamel and King to an expression valid for all z ∈ Z and including an additional
parameter q [8]. Let [S] denote the Iverson bracket: [S] = 1 if the statement S is true and
zero otherwise. Then the identity of Hamel and King is

Xλ(z; q) := det
1⩽i,j⩽l(λ)

(
hλi−i+j + [j > −z]qhλi−i−j+1−z

)
(3.4a)

= ∑
µ∈Pz

(−1)(|µ|−d(µ)(z+1))/2qd(µ)sλ/µ. (3.4b)
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The odd and even orthogonal cases are recovered by setting q = (−1)z and then choos-
ing z = 0, 1 respectively. The expression in terms of skew Schur functions immedi-
ately implies the following duality with respect to the involution ω on Λ which acts as
ωsλ/µ = sλ′/µ′ :

ωXλ(z; q) = Xλ′(−z; (−1)zq).

Again setting q = (−1)z and then z = 1 on the right then recovers the symplectic case
of (3.3), thus extending ωoλ = spλ′ [11, Theorem 2.3.2]. Since our results require only
minor modification to account for negative z we now restrict to 0 ⩽ z ⩽ t − 1.

Our main result is the action of φt on Xλ(z; (−1)z) (which was denoted simply Xλ(z)
in the introduction). To state this we need one more symmetric function, defined for
a, b, c ∈ N by the following sum

rsλ,µ(a, b; c) := ∑
ν

(−1)|ν|sλ/(ν+(ac+dc(ν)))sµ/(ν′+(bdc(ν))),

where dc(ν) is the modified Frobenius rank from Theorem 2. This symmetric function
not only arises naturally in the proof of our main theorem, but also has Jacobi–Trudi-
type determinantal expressions. For c = 0 this was also considered by Hamel and King,
who also gave a Jacobi–Trudi-type expression [8]. If a = b = c = 0 it is essentially the
universal character of the rational representation of GL(n, C) indexed by the pair (λ, µ)
as defined by Koike [10]. (In fact, Koike’s universal character was the inspiration for the
extension of Hamel and King.) The function rsλ,µ(a, a; 0) is symmetric in λ and µ, how-
ever the same does not hold for c ̸= 0. To make the statement below compact we adopt
the convention that rsλ(r),λ(z−r−1)(a, a; cr) = rsλ(z−r−1),λ(r)(a, a;−cr) if cr < 0. Finally, recall
that for c ∈ Cz;t, µc is the unique smallest z-asymmetric partition with κt(t-core(µc)) = c
provided by Corollary 3. With this established, we are ready to state our second main
result.

Theorem 6. Let t ⩾ 2 and z be integers such that 0 ⩽ z ⩽ t − 1. Then φtXλ(z) vanishes unless
κt(t-core(λ)) := c ∈ Cz;t and λ ⊇ µc. If these conditions are satisfied, then

φtXλ(z; (−1)z) = ε
⌊(z−2)/2⌋

∏
r=0

rsλ(r),λ(z−r−1)(1, 1; cr)
⌊(t+z−2)/2⌋

∏
s=z

rsλ(s),λ(t+z−s−1)(0, 0; 0)

×


1 if z even, t even,
Xλ((z−1)/2)(1;−1) if z odd, t odd,
Xλ((t+z−1)/2)(0; 1) if z even, t odd,
Xλ((z−1)/2)(1;−1)Xλ((t+z−1)/2)(0;−1) if z odd, t even,

where the sign ε may be expressed as

ε = (−1)(|µc|+(z−1)d(µc))/2 sgnt(λ/µc).
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For z = 1 the theorem states that φtoλ vanishes unless t-core(λ) is 1-asymmetric, in
which case

φtoλ = (−1)|t-core(λ)|/2 sgnt(λ/t-core(λ))oλ(0)

t−1

∏
r=1

rsλ(r),λ(t−r) ×
{

so−
λ(t/2) t even,

1 t odd,

where so−
ν := Xν(0,−1). This is precisely [2, Theorem 3.2], which generalises [3, The-

orem 2.15]. One notable improvement on both our previous results and those of Ayyer
and Kumari is that the sign in the above has a much nicer, combinatorial, expression.
Another improvement is that Theorem 6 admits a uniform statement and uniform proof
for 0 ⩽ z ⩽ t − 1. To obtain the symplectic case one must compute φtXλ(−z; (−1)z−1),
which is completely analogous to the proof of the above, even though it is (unfortu-
nately) not contained in Theorem 6. There is also a more general version of the theorem
where z ∈ N, as for Theorem 2, which we defer to future work [1].

Let us briefly sketch the proof of Theorem 6. The first step is to apply the map φt
to each term in the skew Schur expansion (3.4b) using Theorem 4. Doing so gives the
expression

φtXλ(z; (−1)z) = ∑
µ∈Pz

λ/µ t-tileable

(−1)(|µ|+(z−1)d(µ))/2 sgnt(λ/µ)
t−1

∏
r=0

sλ(r)/µ(r) .

From this vantage point the vanishing is already visible. Since λ/µ being t-tileable
means that, in particular, t-core(λ) = t-core(µ) the first part of Theorem 2 implies that
κt(t-core(λ)) ∈ Cz;t for the sum to be nonvanishing. The second part of the same theorem
combined with Corollary 3 tells us that (1cr) ⊆ µ(r) ⊆ λ(r) (since λ/µ is t-tileable) for
those 0 ⩽ r ⩽ z − 1 such that cr > 0, which is equivalent to the requirement that
l(λ(r)) ⩾ cr for 0 ⩽ r ⩽ z − 1. The next step is to show that the sum decouples as a
product, and each factor in this product corresponds to the symmetric functions present
in the factorisation. This is the meat of the proof, requiring a careful analysis of the sign
and Frobenius rank as they relate to the Littlewood decomposition. Unfortunately, at
this stage we are unable to include the parameter q present in (3.4) precisely because the
Frobenius rank does not decompose nicely in terms of the Littlewood decomposition.
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